

EPC Drainage Intersections Hampton S at Ericson & Calle Corvo El Paso County, CO

Prepared for:

El Paso County 3275 Akers Drive Colorado Springs, CO 80922 Contact: Howard Schwartz, P.E.

Prepared by:

Kimley-Horn and Associates, Inc. 2 North Nevada Avenue, Suite 900 Colorado Springs, Colorado 80903 (619) 272-7186 Contact: Heidi McMacken, P.E.

Project #: 196441003

Prepared: July 9, 2025

ENGINEER'S STATEMENT

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the city/county for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

SIGNATURE (Affix Seal):	MAL ENGL	7/9/25
,	Colorado P. F. No : 58655	 Date

EL PASO COUNTY STATEMENT

Filed in accordance with Section 51.1 of the El Paso Land Development Code as amended.

Joshua J. Palmer, PE

County Engineer

Conditions:

Table of Contents	
INTRODUCTION	3
PURPOSE	3
GENERAL LOCATION	3
DESCRIPTION OF PROPERTY	3
DRAINAGE BASIN FEESEXISTING SITE DRAINAGE	
SITE 1 – HAMPTON AT ERICSON	4
SITE 2 – CALLE CORVO	
HYDROLOGIC CRITERIA	6
HYDRAULIC CRITERIA	6
CULVERTS	6
STORM DRAIN	6
STREET DRAINAGE AND STORM INLETS	7
EL PASO COUNTY MS4 CRITERIA	7
CONSTRUCTION SITE STORMWATER RUNOFF CONTROL	7
POST-CONSTRUCTION STORMWATER MANAGEMENT IN DEVELOPMENT/REDEVELOPMENT	
FOUR STEP PROCESS PROPOSED SITE DRAINAGE	
SITE 1 – HAMPTON AT ERICSON	8
SITE 2 – CALLE CORVO	9
ENGINEER'S OPINION OF PROBABLE COST	

APPENDIX

Appendix A – Vicinity Map, NRCS Soil Report, and FEMA FIRM Appendix B – Hydrologic Calculations Appendix C – Hydraulic Calculations Appendix D – Engineer's Opinion of Probable Cost Appendix E – Drainage Maps

INTRODUCTION

PURPOSE

The purpose of this report is to summarize the final drainage design at each site for the *El Paso County Drainage Improvement Project* (the "Project"). This Final Drainage Report (the "Report") will identify and analyze the existing and proposed drainage patterns and runoff quantities for Hampton S/Ericson Dr (Site 1) and Calle Corvo (Site 2) and detail proposed improvements to ensure a higher level of service is being provided compared to the existing condition.

GENERAL LOCATION

Site 1 is located in the SE Section 5, Township 15S, Range 66W within El Paso County (the "County"), Colorado. Site 1 is bound by Clover Ditch to the north, Hampton South to the south, and private residences to the east and west.

Site 2 is located in the NW Section 14 and SW Section 11, Township 16S, Range 67W Within El Paso County, Colorado. Site 2 is bound by private residences to the north, south, east, and west.

See **Appendix A** for the Vicinity Maps.

DESCRIPTION OF PROPERTY

Site 1 consists of asphalt roadway and parking lot, concrete sidewalk, and landscaping. Site 1 outfalls to Clover Ditch to the north. According to the Natural Resources Conservation Service (NRCS), the on-site soils consist primarily of Midway-Razor clay loams, which is classified as Hydrologic Soil Group (HSG) D. According to the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) panel 08041C0743G for El Paso County and incorporated areas (eff. 12/07/2018), the entire Site is located in an area of minimal flood hazard (Zone X).

Site 2 consists of asphalt roadway and landscaping. A portion of Site 2 outfalls to a tributary to Little Fountain Creek (North Tributary). According to the NRCS the on-site soils consist primarily of Neville fine sandy loam, which is classified as HSG B, and Rizozo-Neville complex, which is classified as HSG D. HSG D was used for all hydrologic calculations. According to the FEMA FIRM Panel 08041C0950G for EI Paso County and incorporated areas (eff. 12/07/2018), the entire Site is located in an area of minimal flood hazard (Zone X).

See Appendix A for the NRCS Web Soil Surveys and FEMA FIRM Panels.

DRAINAGE BASIN FEES

Improvements at both Site 1 and Site 2 are considered redevelopment; therefore, no drainage basin fees are required.

EXISTING SITE DRAINAGE

SITE 1 - HAMPTON AT ERICSON

In the existing condition, GIS contours show flow from basins HE-2 and HE-5 flowing north on B Street and Chamberlin South, respectively; however, to be conservative, half the flow from each basin was assumed to flow onsite during the 10- and 100-year storm events due to the limited capacity of the cross pans along each street. A quarter of flow from HE-2 was assumed to flow to sub-basins HE-1 and HE-3 each. Additionally, a quarter of flow from HE-5 was assumed to flow to sub-basins HE-1 and HE-4 each. During the 5-year storm event, it was assumed that no runoff from basins HE-2 or HE-5 flows onsite and will instead continue north on B Street and Chamberlin South.

Runoff generally flows south to north via overland sheet flow and concentrated flow in curb and gutters before ultimately outfalling to Clover Ditch. The existing runoff within each sub-basin follows the flow patterns as described in **Table 1**.

Existing Design Point	Contributing Sub-Basins	Q5 (cfs); Q10 (cfs); Q100 (cfs)	Area Description	Existing Flow Pattern
HE-1	HE-1 ¼ HE-2 ¼ HE-5	7.0; 8.4; 12.7 0; 7.2; 11.2 0; 11.3; 18.6	Paved roads, parking lot, and sidewalk; roof; and landscaping	Sheet flow across paved road and landscaping; concentrated flow along curb and gutter
HE-3	HE-3 1⁄4 HE-2	46.47; 73.23 0; 7.2; 11.2	Paved roads and sidewalk, roof, and landscaping	Sheet flow across paved road and landscaping; concentrated flow along curb and gutter
HE-4	HE-4 1⁄4 HE-5	23.84; 40.64 0; 11.3; 18.6	Paved roads and sidewalk, roof, and landscaping	Sheet flow across paved road and landscaping; concentrated flow along curb and gutter
TOTAL t	o Clover Ditch	64.2; 115.7; 186.2		

SITE 2 - CALLE CORVO

In the existing condition, runoff generally flows southwest to northeast via overland sheet flow and concentrated flow in thalwegs and culverts.

Based on existing GIS contours and site visits, flow from basin CC-9 is conveyed to 11580 Calle Corvo. Additionally, it was assumed that flow from basin CC-10 is also conveyed to 11580 Calle Corvo via existing roadside ditch to be conservative. In the existing condition, this accounts for approximately 5 cfs and 8 cfs total in the 10-year and 100-year storm event, respectively.

Based on survey contours and site visits, the steep slopes up the driveway of 11545 Calle Corvo paired with the lack of driveway culvert at this residence, it appears that runoff from basin CC-8b, CC-7b, CC-6b, CC-11, and CC-12 is conveyed to the existing flow paths south and west of 11520 Calle Corvo within basin CC-5.

The existing runoff within each sub-basin follows the flow patterns as described in Table 2.

Table 2. Existing Flow Patterns Tributary to Site 2.

Existing Design Point	Contributing Sub-Basins	Q5 (cfs); Q10 (cfs); Q100 (cfs)	Area Description	Existing Flow Pattern
CC-1 (Ex North Culvert Inlet)	CC-1 CC-2 TOTAL	14.3; 46.7; 67.2 0.6; 1.1; 1.6 15.0; 47.8; 68.8	Paved roads, roof, and landscaping	Sheet flow across paved road and landscaping; concentrated flow within channels
CC-4 (North Tributary)	CC-1 CC-2 CC-3 CC-4 TOTAL	14.3; 46.7; 67.2 0.6; 1.1; 1.6 0.6; 0.9; 1.3 0.5; 1.8; 2.5 16.0 ; 50.5 ; 72.2	Paved roads, roof, and landscaping	Sheet flow across paved road and landscaping; concentrated flow within channels
CC-6b (11520 Calle Corvo)	CC-6b CC-7b CC-8b CC-11 CC-12 TOTAL	0.6; 1.0; 1.4 0.6; 1.0; 1.5 3.4; 6.3; 9.1 2.6; 4.2; 6.1 1.7; 3.3; 4.7 8.9; 15.8; 22.7	Paved roads, roof, and landscaping	Sheet flow across paved road and landscaping; concentrated flow within channels
CC-9 (11580 Calle Corvo)	CC-9 CC-10 TOTAL	0.6; 1.1; 1.6 2.5; 4.3; 6.1 3.1; 5.4; 7.7	Paved roads, roof, and landscaping	Sheet flow across paved road and landscaping; concentrated flow within channels
CC-5 (Ex South Culvert Inlet)	CC-5 CC-6a CC-6b CC-7b CC-8b CC-9 CC-10 CC-11 CC-12	62.4; 188.1; 270.6 0.9; 1.5; 2.2 0.6; 1.0; 1.4 0.6; 1.0; 1.5 3.4; 6.3; 9.1 0.6; 1.1; 1.6 2.5; 4.3; 6.1 2.6; 4.2; 6.1 1.7; 3.3; 4.7 75.3; 210.8; 303.3	Paved roads, roof, and landscaping	Sheet flow across paved road and landscaping; concentrated flow within channels
CC-8a (South Tributary)	CC-5 CC-6a CC-6b CC-7a CC-7b CC-8a CC-8b CC-9 CC-10 CC-11 CC-12	62.4; 188.1; 270.6 0.9; 1.5; 2.2 0.6; 1.0; 1.4 1.0; 1.7; 2.4 0.6; 1.0; 1.5 5.3; 14.3; 20.5 3.4; 6.3; 9.1 0.6; 1.1; 1.6 2.5; 4.3; 6.1 2.6; 4.2; 6.1 1.7; 3.3; 4.7 81.7; 226.8; 326.3	Paved roads, roof, and landscaping	Sheet flow across paved road and landscaping; concentrated flow within channels

See **Appendix E** for the Existing Drainage Maps and **Appendix B** for existing hydrologic calculations for both Site 1 and Site 2.

DRAINAGE DESIGN CRITERIA

The objective of the proposed Site drainage improvements is to ensure that the proposed design provides a higher level of service and meets current El Paso County Municipal Separate Storm Sewer System (MS4) requirements. In addition, design standards from the El Paso County Engineering Criteria Manual (ECM), City of Colorado Springs and El Paso County Drainage Criteria Manual (DCM), and the Mile High Flood District (MHFD) Urban Storm Drainage Criteria Manual (USDCM) are applicable to this project. The proposed improvements prioritize meeting the MS4 requirements and implementing the design standards from the other drainage criteria as applicable and practicable given Site constraints.

HYDROLOGIC CRITERIA

The hydrologic calculations completed for the existing and proposed conditions of Site 1 and Site 2 adheres to the criteria outlined below and are provided in **Appendix B**.

It should be noted that El Paso County defers to the DCM (City of Colorado Springs criteria) for hydrology. See below for the current hydrologic criteria as outlined in the DCM.

EPC DCM Vol. 1 Ch. 5.1 - Ch. 5.3 / EPC ECM Vol. 1 Ch. 3.3 / COS DCM Ch. 6.3.2

- Utilize the rational method (100 acres or less)
- The initial (minor) design storm will be the 10-year event. The major design storm will be the 100-year event.
- Table 6-6 will be used for the runoff coefficients and percent impervious.

HYDRAULIC CRITERIA

CULVERTS

EPC DCM Vol 1 Ch 2.4 / Ch 6.4 / Ch 9

- Culverts will be designed to pass the 10-year storm event.
- The 100-year flow must meet the criteria outlined in Tables 6-4 and 6-5 of the EPC DCM.
- Minimum velocity though the culvert is 2.5 fps.
- The minimum size culvert will be 18 inches in diameter or its hydraulic equivalent. The use of culverts less than 18" in diameter for driveways must have the approval of the County.

STORM DRAIN

EPC DCM Vol 1 Ch 6.3 / Ch 8

- The storm drain must be analyzed for the 10-year and 100-year storm runoff and provide passage with no loss of life or major property damage.
 - The hydraulic grade line will in no case be closer than one (1) foot to the ground or street surface unless otherwise approved by the County.
- A mean velocity between 2.5 fps and 18 fps must be maintained though the storm drain.
- Pipes which are to become an integral part of the public storm drain system will have a minimum diameter of 15 inches.
- Instances in which a pipe changes size, the crowns will be matched.
- Manhole spacing will be in accordance with Table 6-2.
- Minimum pipe slope will be in accordance with Table 6-3.

STREET DRAINAGE AND STORM INLETS

ECM Vol 1 Ch 2.3 / Ch 6.2 / Ch 7

- Determination of street capacity for the minor storm shall be based upon pavement encroachment. The pavement encroachment for the minor storm shall be limited as set forth in Table 6-1.
 - In all cases the flow encroachment shall not extend past the street right-of-way for the minor storm event. The storm drain system should begin at or before the point where the maximum encroachment is reached.
- Determination of the allowable capacity for major storm shall be based upon allowable depth and inundated area. The allowable depth and inundated area for the major storm shall be limited as set forth in Table 6-1.
- Allowable use and cross flow for streets to meet the criteria outlined in Table 6-1 of the ECM.
- Where gutter or street capacity as shown on Table 6-1 is exceeded, inlets shall be installed to
 effectively intercept runoff.
 - Inlet type, sizing, and location shall be selected based on the geometry and characteristics of the gutter flow as defined in Chapter 7 of the ECM.

EL PASO COUNTY MS4 CRITERIA

The Site lies within the existing 2024 El Paso County MS4 permit area for the Colorado Department of Public Health and Environment (CDPHE) Colorado Discharge Permit System (CDPS) permit No COR-090011. Therefore, if the Site improvements disturb one (1) acre or more, each Site will need to comply with current El Paso County MS4 requirements.

CONSTRUCTION SITE STORMWATER RUNOFF CONTROL

A pollutant control program must be implemented on Site to reduce pollutants in stormwater runoff to the storm system from construction activities that result in land disturbance of one or more acres. The program must include requirements for construction site owners or operators to implement appropriate erosion and sediment control measures (CMs), such as silt fences, temporary detention ponds and hay bales, and to control other waste such as discarded building materials, procedures for site plan review, procedures for receipt and consideration of information provided by the public, procedures for inspections during construction, and penalties to ensure compliance.

This control is covered by the County's Erosion and Stormwater Quality Control Program. As a part of this program, the proposed construction associated with this Site will develop Grading and Erosion Control Plans, a Construction Stormwater Management Plan, and the contractor will obtain an Erosion and Stormwater Quality Control Permit (ESQCP).

POST-CONSTRUCTION STORMWATER MANAGEMENT IN DEVELOPMENT/REDEVELOPMENT

The quality of stormwater discharge entering the MS4 from the Site must be addressed on Sites that result in land disturbance of one or more acres, less applicable exclusions. This includes implementation of structural and non-structural CMs, as appropriate for the Site.

FOUR STEP PROCESS

Existing grade and surface conditions will be re-established in the proposed condition of this Project at Site 1 upon the installation of the proposed storm infrastructure, with the exception of curb and gutter transitions where proposed curb inlets will be placed and the installation of the overflow swale. Additionally, Site 1 improvements will not be associated with development or redevelopment as this Project will be funded by El Paso County. The total disturbance associated with Site 1 is 0.12 acres.

Disturbance at Site 2 will include the installation of a driveway culvert at 11580 Calle Corvo and providing stream stabilization at the existing 36" CMP North culvert outfall. The total disturbance associated with Site 2 is 0.08 acres.

Since the total disturbance associated with this Project is less than 1 acre per Site, the provisions of the Four Step Process do not apply for this Project and Post-Construction (Permanent) Stormwater Management will not be required.

PROPOSED SITE DRAINAGE

The proposed drainage patterns will remain the same as in the existing condition and there are no proposed changes to the tributary area to either Site 1 or Site 2; therefore, the sub-basins and hydrology in the proposed condition remain exactly the same as the existing condition and have not been repeated. Please refer to **Table 1** and **Table 2** for the description of the proposed drainage sub-basins.

See **Appendix E** for the Proposed Drainage Maps.

SITE 1 - HAMPTON AT ERICSON

The selected alternative for Site 1 includes replacing the existing grate inlet with a 25' double-sided Type R inlet with a proposed 48" RCP parallel outfall pipe and FES to Clover Ditch, which will tie into the existing riprap and run parallel to the existing 30"CMP outfall pipe, at the intersection of Hampton South and Ericson Drive. Additionally, an overflow path (curb chase) connected to the double-sided inlet will be constructed with an overflow soil riprap swale, and curb and gutter transitions for the proposed double-sided Type R inlet.

All construction activity for Site 1 will remain outside of the 100-year and regulatory floodways; therefore, a floodplain development permit will not be required. Additionally, all construction activity will remain within the Public Right-of-Way (ROW) and existing Public Drainage Easements.

Below is a summary of how the proposed improvements will increase the level of service for Site 1:

- Replacing the existing grate inlets with a double-sided Type R inlet:
 - In the existing condition, the four (4) existing grate inlets do not have capacity in the 10- or 100-year storm events.
 - In the proposed condition, the proposed 25' double-sided Type R inlet has capacity in the 10- and 100-year storm events; however, the existing grate inlets at the southwest and southeast corners of the Hampton South and Ericson Drive intersection do not have capacity during these events so overflow will continue to be conveyed to the sump where the proposed inlet will be installed.

- Construction of a designated overflow path:
 - In the existing condition, there is no designated overflow path so after ponding in Hampton South, runoff flows through the drive access to the east, through the parking lot to the existing grass landscaping before flowing into Clover Ditch to the north.
 - In the proposed condition, overflow from the proposed 25' double-sided Type R inlet will be conveyed through the back of the inlet, through a proposed curb chase, through the parking lot, to a proposed soil riprap-line swale before flowing to Clover Ditch.
- Installation of a 48" RCP parallel outfall pipe:
 - In the existing condition, the existing 30" CMP outfall pipe surcharges in the 5-year and larger rainfall events.
 - In the proposed condition, the proposed 48" RCP outfall on its own contains the 5- and 10yr HGLs within the pipe and only surcharges in the 100-year event. Additionally, the velocity within the pipe is less than 18 fps.

While the above improvements will not adhere to EPC criteria, they will be providing a higher level of service to the community and local residents when compared to the existing condition.

SITE 2 - CALLE CORVO

The selected alternative for Site 2 includes installing a 12" RCP driveway culvert at 11580 Calle Corvo, in addition to constructing a headwall and wingwall with a grouted riprap pad at the existing 36" CMP North culvert to the North Tributary.

All construction activity for Site 2 will remain within the Public ROW. Additionally, the North Tributary does not lie within a mapped floodplain; therefore, a floodplain development permit will not be required.

Below is a summary of how the proposed improvements will increase the level of service for Site 2:

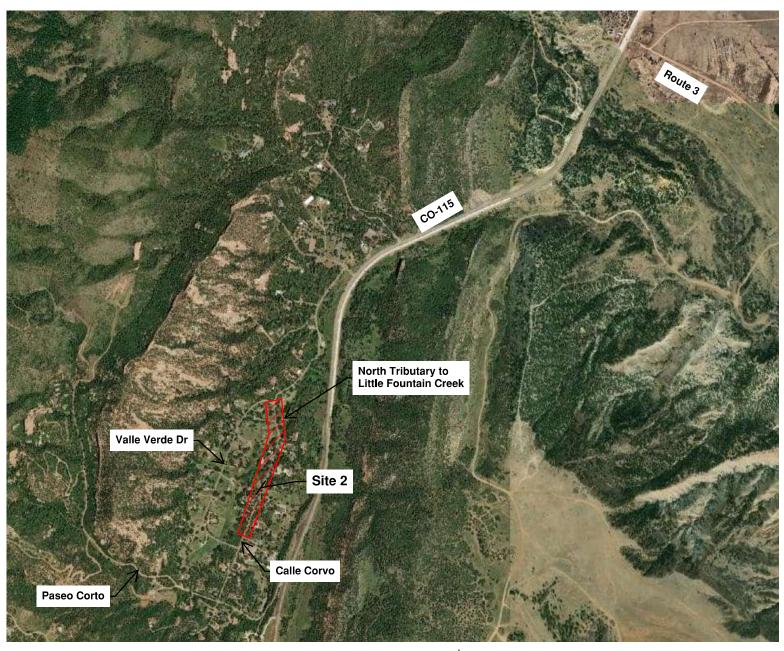
- 11580 Calle Corvo driveway culvert:
 - In existing condition, there is no driveway culvert at this location, so all runoff is conveyed directly over the driveway.
 - In proposed condition, the proposed 12" RCP driveway culvert is designed to contain runoff from the 5-year event. The driveway will overtop during larger events; however, a designated flow path at the downstream end of the driveway culvert provides a clear path for runoff when this happens. Additionally, grading at the upstream end of the driveway culvert will allow for runoff to pond before overtopping driveway.
- Existing north culvert outfall improvements:
 - o In existing condition, the existing 36" CMP north culvert is protruding from the embankment out to the North tributary due to undercutting and unstable banks.
 - o In the proposed condition, the installation of a headwall and wingwall, and a grouted riprap pad at the downstream end of the existing north culvert will help mitigate the existing undercutting of the existing 36" CMP culvert and protect the Calle Corvo roadway subgrade. These improvements will also provide stabilization to the portion of the North Tributary directly downstream from the existing north culvert.

While the above improvements will not adhere to EPC criteria, they will be providing a higher level of service to the community and local residents when compared the existing condition.

ENGINEER'S OPINION OF PROBABLE COST

The total estimated cost for the selected alternatives at each Site is approximately \$670,000. Detailed costs and assumptions for the selected alternatives are provided in **Appendix D**. The cost estimates utilized the 2024 CDOT Cost Data Book and other recent project bids. All unit values were increased by 6.5% for inflation to adjust to 2025 dollars.

CONCLUSION


The drainage design presented within this report for the *El Paso County Drainage Improvement Project* conforms to current El Paso County Municipal Separate Storm Sewer System (MS4) requirements, and design standards from the El Paso County Engineering Criteria Manual (ECM), City of Colorado Springs and El Paso County Drainage Criteria Manual (DCM), and the Mile High Flood District (MHFD) Urban Storm Drainage Criteria Manual (USDCM) when possible.

APPENDIX A - VICINITY MAP, NRCS SOIL REPORT, AND FEMA FIRM

Site 1 Vicinity Map N.T.S.

Site 2 Vicinity Map N.T.S.

NRCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for El Paso County Area, Colorado

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2 053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
Soil Map	
Soil Map	
Legend	
Map Unit Legend	
Map Unit Descriptions	
El Paso County Area, Colorado	
127—Midway-Razor clay loams, dry, 1 to 18 percent slopes	

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND

Soils Area of Interest (AOI) Special Point Features X) Gravel Pit Closed Depression Clay Spot Blowout Soil Map Unit Points Soil Map Unit Lines Mine or Quarry Marsh or swamp Lava Flow Landfill Gravelly Spot Borrow Pit Soil Map Unit Polygons Area of Interest (AOI) Background Water Features ransportation Ī 3 W Other Wet Spot Aerial Photography Local Roads Major Roads **US** Routes Interstate Highways Streams and Canals Special Line Features Very Stony Spot Stony Spot Spoil Area

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 21, Aug 24, 2023

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Û

Severely Eroded Spot

Rock Outcrop
Saline Spot
Sandy Spot

0

Sinkhole
Slide or Slip
Sodic Spot

0

Miscellaneous Water

Perennial Water

Date(s) aerial images were photographed: Aug 19, 2018—Sep 23, 2018

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
127	Midway-Razor clay loams, dry, 1 to 18 percent slopes	1.5	100.0%
Totals for Area of Interest		1.5	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Custom Soil Resource Report

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

El Paso County Area, Colorado

127—Midway-Razor clay Ioams, dry, 1 to 18 percent slopes

Map Unit Setting

National map unit symbol: 2t52f Elevation: 3,700 to 6,400 feet

Mean annual precipitation: 12 to 14 inches Mean annual air temperature: 48 to 54 degrees F

Frost-free period: 130 to 170 days

Farmland classification: Not prime farmland

Map Unit Composition

Midway, dry, and similar soils: 46 percent Razor, dry, and similar soils: 44 percent

Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Midway, Dry

Setting

Landform: Ridges, hillslopes

Landform position (two-dimensional): Backslope

Landform position (three-dimensional): Side slope, crest

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Slope alluvium and/or residuum weathered from shale

Typical profile

A - 0 to 3 inches: clay loam AC - 3 to 9 inches: clay

C - 9 to 16 inches: paragravelly clay

Cr - 16 to 79 inches: bedrock

Properties and qualities

Slope: 3 to 18 percent

Depth to restrictive feature: 11 to 20 inches to paralithic bedrock

Drainage class: Well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high

(0.00 to 0.21 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 15 percent

Gypsum, maximum content: 5 percent

Maximum salinity: Very slightly saline to slightly saline (2.0 to 7.9 mmhos/cm)

Sodium adsorption ratio, maximum: 10.0

Available water supply, 0 to 60 inches: Very low (about 2.2 inches)

Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: D

Ecological site: R069XY046CO - Shaly Plains

Custom Soil Resource Report

Hydric soil rating: No

Description of Razor, Dry

Setting

Landform: Pediments, hillslopes

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope

Down-slope shape: Linear Across-slope shape: Convex

Parent material: Slope alluvium and/or residuum weathered from shale

Typical profile

A - 0 to 4 inches: clay loam Bw - 4 to 15 inches: silty clay Bky - 15 to 30 inches: clay Cr - 30 to 79 inches: bedrock

Properties and qualities

Slope: 1 to 9 percent

Depth to restrictive feature: 20 to 39 inches to paralithic bedrock

Drainage class: Well drained Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high

(0.00 to 0.21 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 15 percent

Gypsum, maximum content: 5 percent

Maximum salinity: Very slightly saline to slightly saline (2.0 to 7.9 mmhos/cm)

Sodium adsorption ratio, maximum: 10.0

Available water supply, 0 to 60 inches: Low (about 4.7 inches)

Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: D

Ecological site: R069XY047CO - Alkaline Plains

Hydric soil rating: No

Minor Components

Manzanola

Percent of map unit: 9 percent Landform: Fan remnants, hillslopes

Landform position (two-dimensional): Backslope, footslope Landform position (three-dimensional): Side slope, base slope

Down-slope shape: Linear Across-slope shape: Linear

Ecological site: R069XY042CO - Clayey Plains

Other vegetative classification: Loamy Plains #6 (069XY006CO 2)

Hydric soil rating: No

Rock outcrop

Percent of map unit: 1 percent

Hydric soil rating: No

Custom Soil Resource Report

Natural Resources Conservation

Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for El Paso County Area, Colorado

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

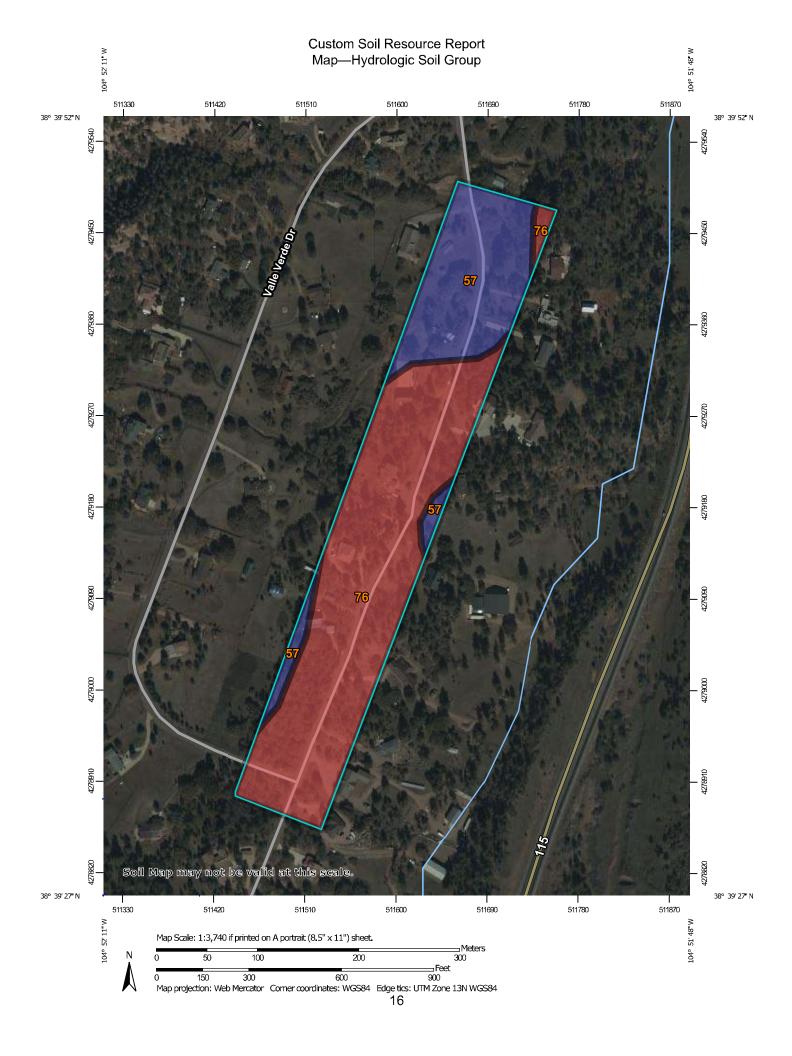
Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require


alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
Soil Map	
Soil Map	
Legend	7
Map Unit Legend	
Map Unit Descriptions	
El Paso County Area, Colorado	10
57—Neville fine sandy loam, 3 to 9 percent slopes	
76—Rizozo-Neville complex, 3 to 30 percent slopes	11
Soil Information for All Uses	14
Soil Properties and Qualities	14
Soil Qualities and Features	14
Hydrologic Soil Group	14

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND

MAP INFORMATION

Soils Area of Interest (AOI) Soil Rating Polygons Soil Rating Points Soil Rating Lines Not rated or not available o C/D C B/D ϖ ₽ B/D w ₽ Not rated or not available O C/D \circ B/D ₩ ΑD Area of Interest (AOI) Background Water Features Transportation Rails Aerial Photography o C/D C Local Roads Major Roads **US Routes** Interstate Highways Streams and Canals Not rated or not available compiled and digitized probably differs from the background Survey Area Data: of the version date(s) listed below. Albers equal-area conic projection, should be used if more distance and area. A projection that preserves area, such as the Coordinate System: Web Mercator (EPSG:3857) contrasting soils that could have been shown at a more detailed line placement. The maps do not show the small areas of misunderstanding of the detail of mapping and accuracy of soil shifting of map unit boundaries may be evident. Date(s) aerial images were photographed: 20, 2018 1:50,000 or larger. Soil map units are labeled (as space allows) for map scales Soil Survey Area: El Paso County Area, Colorado accurate calculations of distance or area are required. projection, which preserves direction and shape but distorts Maps from the Web Soil Survey are based on the Web Mercator Web Soil Survey URL: measurements Enlargement of maps beyond the scale of mapping can cause Warning: Soil Map may not be valid at this scale. The soil surveys that comprise your AOI were mapped at 1:24,000. imagery displayed on these maps. As a result, some minor The orthophoto or other base map on which the soil lines were This product is generated from the USDA-NRCS certified data as Source of Map: Natural Resources Conservation Service Please rely on the bar scale on each map sheet for map Version 21, Aug 24, 2023 Sep 11, 2018—Oct

Table—Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
57	Neville fine sandy loam, 3 to 9 percent slopes	В	4.7	30.3%
76	Rizozo-Neville complex, 3 to 30 percent slopes	D	10.9	69.7%
Totals for Area of Intere	est	1	15.6	100.0%

Rating Options—Hydrologic Soil Group

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified

Tie-break Rule: Higher

El Paso County Area, Colorado

57—Neville fine sandy loam, 3 to 9 percent slopes

Map Unit Setting

National map unit symbol: 3691 Elevation: 5,900 to 6,500 feet

Mean annual precipitation: 13 to 15 inches Mean annual air temperature: 46 to 50 degrees F

Frost-free period: 130 to 150 days

Farmland classification: Not prime farmland

Map Unit Composition

Neville and similar soils: 95 percent Minor components: 5 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Neville

Setting

Landform: Hills

Landform position (three-dimensional): Side slope

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Calcareous loamy alluvium

Typical profile

A - 0 to 10 inches: fine sandy loam

C - 10 to 60 inches: loam

Properties and qualities

Slope: 3 to 9 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 2.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 10 percent

Gypsum, maximum content: 2 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum: 2.0

Available water supply, 0 to 60 inches: High (about 9.2 inches)

Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: B

Ecological site: R049XB202CO - Loamy Foothill

Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: 4 percent Hydric soil rating: No

Pleasant

Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes

76—Rizozo-Neville complex, 3 to 30 percent slopes

Map Unit Setting

National map unit symbol: 369q Elevation: 6,000 to 6,500 feet

Mean annual precipitation: 13 to 15 inches Mean annual air temperature: 46 to 50 degrees F

Frost-free period: 130 to 150 days

Farmland classification: Not prime farmland

Map Unit Composition

Rizozo and similar soils: 55 percent Neville and similar soils: 40 percent Minor components: 5 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Rizozo

Setting

Landform: Fans, terraces, hills

Landform position (three-dimensional): Side slope

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Medium-textured residuum weathered from sandstone

Typical profile

A - 0 to 3 inches: loam C - 3 to 10 inches: loam

R - 10 to 20 inches: unweathered bedrock

Properties and qualities

Slope: 3 to 30 percent

Depth to restrictive feature: 10 to 20 inches to lithic bedrock

Drainage class: Well drained Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None

Custom Soil Resource Report

Frequency of ponding: None

Calcium carbonate, maximum content: 10 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Available water supply, 0 to 60 inches: Very low (about 1.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: D

Ecological site: R049XB204CO - Shallow Foothill

Hydric soil rating: No

Description of Neville

Setting

Landform: Fans, hills, terraces

Landform position (three-dimensional): Side slope

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Calcareous loamy alluvium derived from sandstone and shale

Typical profile

A - 0 to 10 inches: fine sandy loam

C - 10 to 60 inches: loam

Properties and qualities

Slope: 3 to 15 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 2.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 10 percent

Gypsum, maximum content: 2 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum: 2.0

Available water supply, 0 to 60 inches: High (about 9.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: B

Ecological site: R049XC202CO - Loamy Foothill 14-19 PZ

Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: 4 percent

Hydric soil rating: No

Pleasant

Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes

National Flood Hazard Layer FIRMette

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

HAZARD AREAS SPECIAL FLOOD

Without Base Flood Elevation (BFE) Zone A, V. A99 With BFE or Depth Zone AE AO, AH, VE AP

Regulatory Floodway

areas of less than one square mile Zone of 1% annual chance flood with average 0.2% Annual Chance Flood Hazard, Area depth less than one foot or with drainage

Chance Flood Hazard Zone X Future Conditions 1% Annual

Area with Reduced Flood Risk due to

Area with Flood Risk due to Levee Zone D Levee, See Notes, Zone X

No screen Area of Minimal Flood Hazard Zone

Effective LOMRs

- - - Channel, Culvert, or Storm Sewer Area of Undetermined Flood Hazard 2010

OTHER AREAS

GENERAL

STRUCTURES | | Levee, Dike, or Floodwall

Cross Sections with 1% Annual Chance

17.5 Water Surface Elevation Limit of Study Base Flood Elevation Line (BFE) Coastal Transect Jurisdiction Boundary

Coastal Transect Baseline Hydrographic Feature Profile Baseline

FEATURES

OTHER

No Digital Data Available

Digital Data Available

MAP PANELS

Unmapped

point selected by the user and does not represent an authoritative property location. The pin displayed on the map is an approximate

accuracy standards The basemap shown complies with FEMA's basemap digital flood maps if it is not void as described below. This map complies with FEMA's standards for the use of

become superseded by new data over time. time. The NFHL and effective information may change or reflect changes or amendments subsequent to this date and was exported on 9/11/2024 at 12:45 PM and does not authoritative NFHL web services provided by FEMA. This map The flood hazard information is derived directly from the

FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for legend, scale bar, map creation date, community identifiers, elements do not appear: basemap imagery, flood zone labels, This map image is void if the one or more of the following map regulatory purposes.

250

500

1,000

1,500

2,000 Feet

1:6,000

Basemap Imagery Source: USGS National Map 2023

104°47'23"W 38°45'59"N

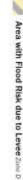
National Flood Hazard Layer FIRMette

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

SPECIAL FLOOD HAZARD AREAS Regulatory Floodway

Without Base Flood Elevation (BFE) Zone A, V.A99 With BFE or Depth Zone AE AO, AH, VE AP


areas of less than one square mile Zone) Future Conditions 1% Annual

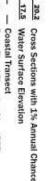
of 1% annual chance flood with average 0.2% Annual Chance Flood Hazard, Areas

depth less than one foot or with drainage

Chance Flood Hazard Zone X

FLOOD HAZARD

Levee, See Notes, Zone X Area with Reduced Flood Risk due to



Effective LOMRs

- - - Channel, Culvert, or Storm Sewer Area of Undetermined Flood Hazard Zone

OTHER AREAS

STRUCTURES | 1111111 Levee, Dike, or Floodwall GENERAL

Coastal Transect Baseline Limit of Study Base Flood Elevation Line (BFE) Jurisdiction Boundary

FEATURES

OTHER

No Digital Data Available

MAP PANELS

Unmapped

point selected by the user and does not represent an authoritative property location. The pin displayed on the map is an approximate

accuracy standards The basemap shown complies with FEMA's basemap digital flood maps if it is not vold as described below. This map complies with FEMA's standards for the use of

become superseded by new data over time. authoritative NFHL web services provided by FEMA. This map was exported on 9/16/2024 at 12:40 PM and does not The flood hazard information is derived directly from the time. The NFHL and effective information may change or reflect changes or amendments subsequent to this date and

unmapped and unmodernized areas cannot be used for FIRM panel number, and FIRM effective date. Map images for legend, scale bar, map creation date, community identifiers, elements do not appear: basemap imagery, flood zone labels, regulatory purposes. This map image is void if the one or more of the following map

Basemap Imagery Source: USGS National Map 2023

APPENDIX B – HYDROLOGIC CALCULATIONS

NOAA Atlas 14, Volume 8, Version 2 Location name: Colorado Springs, Colorado, USA* Latitude: 38.7703°, Longitude: -104.795° Elevation: 5856 ft**

* source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Michael Yekta, Geoffery Bonnin

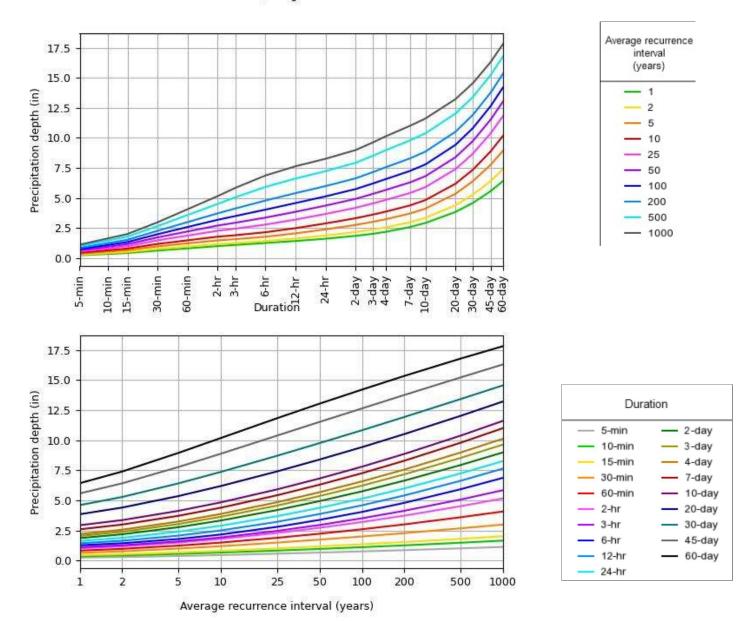
NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

D("				Average	recurrence	interval (ye	ars)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.242 (0.198-0.298)	0.290 (0.237-0.357)	0.374 (0.305-0.463)	0.449 (0.364-0.559)	0.561 (0.441-0.736)	0.654 (0.499-0.870)	0.753 (0.552-1.03)	0.858 (0.601-1.21)	1.01 (0.674-1.47)	1.12 (0.730-1.66
10-min	0.354 (0.290-0.436)	0.424 (0.347-0.523)	0.548 (0.446-0.678)	0.658 (0.533-0.819)	0.822 (0.645-1.08)	0.958 (0.730-1.27)	1.10 (0.808-1.51)	1.26 (0.879-1.78)	1.47 (0.987-2.15)	1.65 (1.07-2.44)
15-min	0.432 (0.353-0.532)	0.517 (0.423-0.638)	0.668 (0.544-0.827)	0.803 (0.650-0.999)	1.00 (0.787-1.32)	1.17 (0.891-1.55)	1.34 (0.986-1.84)	1.53 (1.07-2.17)	1.80 (1.20-2.62)	2.01 (1.30-2.97)
30-min	0.632 (0.518-0.779)	0.760 (0.621-0.938)	0.984 (0.802-1.22)	1.18 (0.959-1.47)	1.48 (1.16-1.94)	1.73 (1.32-2.30)	1.99 (1.46-2.73)	2.27 (1.59-3.21)	2.67 (1.79-3.90)	2.98 (1.94-4.41)
60-min	0.819 (0.671-1.01)	0.964 (0.788-1.19)	1.23 (1.00-1.53)	1.49 (1.20-1.85)	1.88 (1.49-2.49)	2.22 (1.70-2.98)	2.59 (1.91-3.57)	3.00 (2.11-4.26)	3.59 (2.41-5.26)	4.07 (2.64-6.02)
2-hr	1.01 (0.829-1.23)	1.17 (0.961-1.43)	1.48 (1.21-1.82)	1.79 (1.46-2.21)	2.28 (1.82-3.02)	2.71 (2.10-3.62)	3.19 (2.37-4.39)	3.73 (2.64-5.28)	4.51 (3.06-6.59)	5.16 (3.38-7.57)
3-hr	1.10 (0.912-1.35)	1.26 (1.04-1.54)	1.58 (1.30-1.94)	1.91 (1.56-2.35)	2.46 (1.98-3.26)	2.95 (2.30-3.94)	3.50 (2.62-4.82)	4.13 (2.95-5.86)	5.06 (3.46-7.39)	5.84 (3.84-8.54)
6-hr	1.26 (1.05-1.53)	1.43 (1.19-1.73)	1.78 (1.48-2.17)	2.16 (1.77-2.64)	2.79 (2.27-3.70)	3.37 (2.65-4.50)	4.03 (3.05-5.53)	4.79 (3.45-6.76)	5.92 (4.08-8.60)	6.87 (4.56-9.98)
12-hr	1.43 (1.20-1.72)	1.64 (1.37-1.97)	2.06 (1.72-2.49)	2.49 (2.06-3.03)	3.21 (2.62-4.20)	3.86 (3.04-5.09)	4.58 (3.48-6.22)	5.40 (3.92-7.56)	6.62 (4.60-9.53)	7.64 (5.11-11.0)
24-hr	1.62 (1.36-1.94)	1.88 (1.58-2.26)	2.39 (2.00-2.88)	2.89 (2.41-3.49)	3.68 (3.01-4.75)	4.37 (3.46-5.70)	5.14 (3.92-6.89)	5.99 (4.37-8.29)	7.23 (5.06-10.3)	8.26 (5.58-11.8)
2-day	1.86 (1.57-2.20)	2.17 (1.84-2.58)	2.76 (2.33-3.30)	3.32 (2.78-3.98)	4.19 (3.43-5.34)	4.93 (3.93-6.36)	5.74 (4.41-7.63)	6.64 (4.88-9.10)	7.93 (5.58-11.2)	8.99 (6.12-12.8)
3-day	2.03 (1.73-2.40)	2.38 (2.02-2.82)	3.03 (2.56-3.60)	3.63 (3.05-4.34)	4.56 (3.75-5.78)	5.35 (4.28-6.87)	6.22 (4.79-8.21)	7.16 (5.28-9.77)	8.52 (6.03-12.0)	9.63 (6.60-13.7)
4-day	2.19 (1.86-2.58)	2.56 (2.18-3.02)	3.24 (2.74-3.84)	3.87 (3.26-4.61)	4.84 (3.99-6.12)	5.67 (4.54-7.26)	6.57 (5.08-8.65)	7.56 (5.59-10.3)	8.97 (6.37-12.6)	10.1 (6.96-14.3)
7-day	2.59 (2.22-3.04)	2.98 (2.55-3.51)	3.71 (3.16-4.37)	4.38 (3.72-5.20)	5.42 (4.49-6.79)	6.30 (5.07-8.00)	7.25 (5.64-9.48)	8.29 (6.17-11.2)	9.78 (6.99-13.6)	11.0 (7.62-15.5)
10-day	2.93 (2.52-3.42)	3.35 (2.88-3.92)	4.12 (3.53-4.84)	4.83 (4.11-5.70)	5.90 (4.90-7.36)	6.81 (5.51-8.61)	7.79 (6.08-10.1)	8.86 (6.62-11.9)	10.4 (7.45-14.4)	11.6 (8.07-16.3)
20-day	3.84 (3.32-4.46)	4.40 (3.80-5.11)	5.35 (4.61-6.24)	6.19 (5.30-7.26)	7.40 (6.15-9.08)	8.39 (6.80-10.5)	9.42 (7.38-12.1)	10.5 (7.89-13.9)	12.0 (8.68-16.5)	13.2 (9.28-18.4)
30-day	4.60 (3.99-5.32)	5.28 (4.58-6.11)	6.41 (5.54-7.44)	7.36 (6.32-8.60)	8.70 (7.24-10.6)	9.75 (7.92-12.1)	10.8 (8.50-13.8)	11.9 (8.98-15.7)	13.4 (9.72-18.3)	14.6 (10.3-20.2)
45-day	5.57 (4.86-6.42)	6.41 (5.58-7.40)	7.76 (6.74-8.99)	8.87 (7.66-10.3)	10.4 (8.63-12.5)	11.5 (9.37-14.1)	12.6 (9.94-16.0)	13.8 (10.4-18.0)	15.2 (11.1-20.6)	16.3 (11.6-22.5)
60-day	6.42 (5.61-7.38)	7.39 (6.45-8.50)	8.94 (7.78-10.3)	10.2 (8.80-11.8)	11.8 (9.84-14.1)	13.0 (10.6-15.9)	14.2	15.3 (11.6-19.9)	16.8 (12.2-22.6)	17.8

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

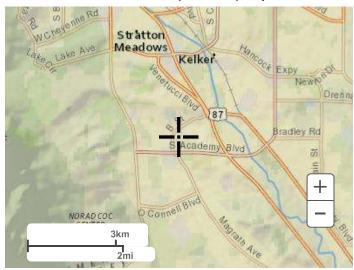

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

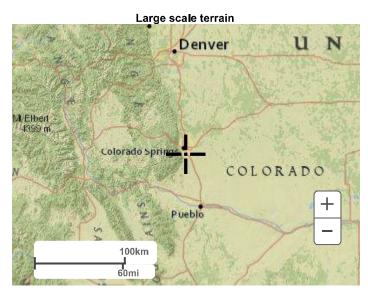
Please refer to NOAA Atlas 14 document for more information.

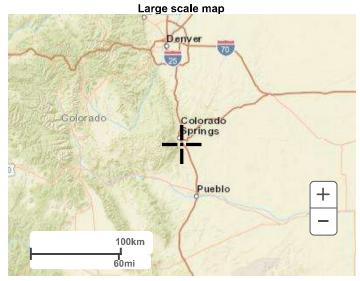
Back to Top

PF graphical

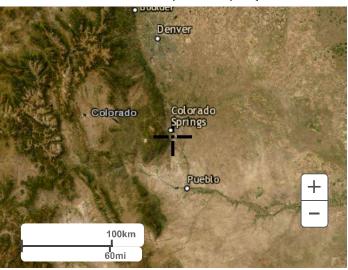
PDS-based depth-duration-frequency (DDF) curves Latitude: 38.7703°, Longitude: -104.7950°


NOAA Atlas 14, Volume 8, Version 2


Created (GMT): Wed Sep 11 16:45:34 2024


Back to Top

Maps & aerials


Small scale terrain

Large scale aerial

Back to Top

US Department of Commerce
National Oceanic and Atmospheric Administration
National Weather Service
National Water Center
1325 East West Highway
Silver Spring, MD 20910
Questions?: HDSC.Questions@noaa.gov

Disclaimer

NOAA Atlas 14, Volume 8, Version 2 Location name: Colorado Springs, Colorado, USA* Latitude: 38.6615°, Longitude: -104.8673° Elevation: 6407 ft**

* source: ESRI Maps

** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

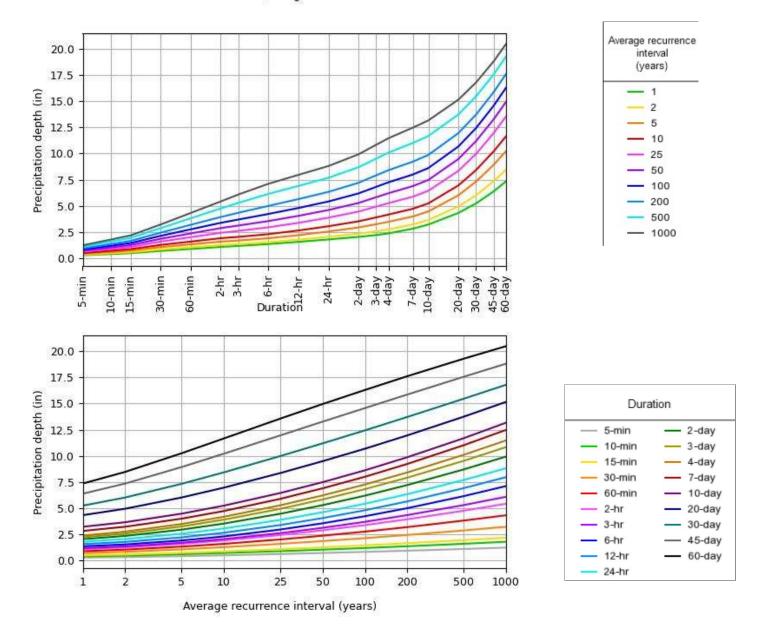
Sanja Perica, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Michael Yekta, Geoffery Bonnin

NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

		р. с с.р			stimates v				(
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.256 (0.205-0.320)	0.305 (0.245-0.382)	0.393 (0.314-0.494)	0.472 (0.375-0.598)	0.592 (0.456-0.793)	0.691 (0.517-0.941)	0.798 (0.574-1.12)	0.913 (0.626-1.33)	1.08 (0.706-1.62)	1.21 (0.766-1.84)
10-min	0.375 (0.301-0.469)	0.447 (0.358-0.560)	0.575 (0.460-0.724)	0.692 (0.549-0.875)	0.866 (0.668-1.16)	1.01 (0.757-1.38)	1.17 (0.840-1.64)	1.34 (0.917-1.94)	1.58 (1.03-2.37)	1.77 (1.12-2.69)
15-min	0.457 (0.367-0.572)	0.545 (0.437-0.683)	0.702 (0.560-0.883)	0.844 (0.669-1.07)	1.06 (0.814-1.42)	1.24 (0.924-1.68)	1.42 (1.02-2.00)	1.63 (1.12-2.37)	1.92 (1.26-2.89)	2.16 (1.37-3.28)
30-min	0.672 (0.540-0.841)	0.804 (0.644-1.01)	1.04 (0.828-1.30)	1.25 (0.991-1.58)	1.57 (1.21-2.10)	1.83 (1.37-2.49)	2.11 (1.52-2.97)	2.42 (1.66-3.52)	2.85 (1.87-4.29)	3.20 (2.03-4.87)
60-min	0.864 (0.693-1.08)	1.02 (0.815-1.27)	1.30 (1.04-1.64)	1.57 (1.24-1.98)	1.99 (1.54-2.68)	2.35 (1.76-3.21)	2.74 (1.97-3.86)	3.17 (2.18-4.63)	3.79 (2.50-5.73)	4.30 (2.73-6.56)
2-hr	1.06 (0.853-1.31)	1.23 (0.992-1.53)	1.56 (1.26-1.95)	1.89 (1.51-2.37)	2.41 (1.88-3.24)	2.86 (2.17-3.90)	3.36 (2.45-4.73)	3.92 (2.72-5.70)	4.74 (3.15-7.11)	5.41 (3.47-8.18)
3-hr	1.15 (0.934-1.43)	1.32 (1.07-1.64)	1.67 (1.35-2.08)	2.02 (1.62-2.52)	2.59 (2.04-3.50)	3.10 (2.37-4.23)	3.68 (2.70-5.16)	4.32 (3.02-6.27)	5.28 (3.53-7.90)	6.07 (3.92-9.14)
6-hr	1.33 (1.09-1.64)	1.51 (1.23-1.86)	1.89 (1.53-2.33)	2.28 (1.84-2.83)	2.93 (2.34-3.95)	3.53 (2.72-4.80)	4.21 (3.12-5.89)	4.98 (3.53-7.20)	6.13 (4.15-9.14)	7.10 (4.63-10.6)
12-hr	1.54 (1.27-1.88)	1.75 (1.44-2.14)	2.18 (1.78-2.68)	2.63 (2.13-3.24)	3.36 (2.70-4.48)	4.03 (3.13-5.42)	4.78 (3.57-6.63)	5.64 (4.02-8.06)	6.90 (4.71-10.2)	7.96 (5.24-11.8)
24-hr	1.77 (1.46-2.15)	2.03 (1.67-2.46)	2.53 (2.08-3.08)	3.04 (2.48-3.72)	3.86 (3.11-5.08)	4.59 (3.58-6.11)	5.41 (4.06-7.41)	6.33 (4.55-8.96)	7.68 (5.29-11.2)	8.81 (5.86-12.9)
2-day	2.02 (1.68-2.42)	2.33 (1.93-2.80)	2.92 (2.42-3.53)	3.51 (2.88-4.26)	4.44 (3.60-5.78)	5.27 (4.14-6.94)	6.18 (4.68-8.39)	7.20 (5.22-10.1)	8.69 (6.05-12.6)	9.92 (6.67-14.5)
3-day	2.19 (1.83-2.62)	2.55 (2.12-3.05)	3.23 (2.68-3.88)	3.88 (3.20-4.69)	4.91 (3.99-6.35)	5.82 (4.58-7.61)	6.81 (5.17-9.18)	7.91 (5.76-11.0)	9.51 (6.65-13.7)	10.8 (7.33-15.7)
4-day	2.36 (1.97-2.81)	2.74 (2.29-3.27)	3.46 (2.88-4.15)	4.16 (3.44-5.01)	5.25 (4.27-6.76)	6.20 (4.90-8.09)	7.25 (5.53-9.74)	8.41 (6.14-11.7)	10.1 (7.08-14.5)	11.5 (7.79-16.6)
7-day	2.80 (2.35-3.32)	3.21 (2.69-3.80)	3.97 (3.32-4.73)	4.71 (3.92-5.64)	5.87 (4.80-7.50)	6.88 (5.47-8.90)	7.99 (6.13-10.7)	9.22 (6.79-12.7)	11.0 (7.79-15.7)	12.5 (8.55-17.9)
10-day	3.20 (2.70-3.78)	3.64 (3.06-4.30)	4.45 (3.74-5.28)	5.22 (4.36-6.23)	6.43 (5.27-8.15)	7.47 (5.96-9.61)	8.61 (6.63-11.4)	9.86 (7.30-13.5)	11.7 (8.31-16.6)	13.2 (9.07-18.8)
20-day	4.31 (3.66-5.05)	4.93 (4.18-5.78)	6.00 (5.07-7.06)	6.95 (5.84-8.22)	8.34 (6.83-10.4)	9.48 (7.58-12.0)	10.7 (8.26-13.9)	12.0 (8.89-16.1)	13.7 (9.84-19.2)	15.2 (10.6-21.5)
30-day	5.22 (4.45-6.09)	6.00 (5.11-7.01)	7.31 (6.20-8.56)	8.41 (7.10-9.91)	9.96 (8.16-12.2)	11.2 (8.96-14.0)	12.4 (9.64-16.1)	13.7 (10.2-18.3)	15.5 (11.1-21.4)	16.8 (11.8-23.7)
45-day	6.37 (5.44-7.39)	7.34 (6.27-8.53)	8.91 (7.59-10.4)	10.2 (8.64-12.0)	11.9 (9.78-14.5)	13.3 (10.6-16.4)	14.6 (11.3-18.6)	15.9 (11.9-21.0)	17.6 (12.7-24.1)	18.8 (13.3-26.5)
60-day	7.34 (6.29-8.49)	8.46 (7.24-9.80)	10.2 (8.74-11.9)	11.7 (9.90-13.6)	13.6 (11.1-16.4)	15.0 (12.0-18.4)	16.3 (12.7-20.7)	17.6 (13.2-23.2)	19.3 (14.0-26.4)	20.5 (14.5-28.7)

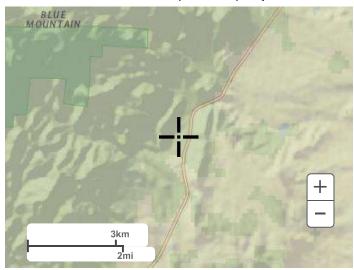

Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

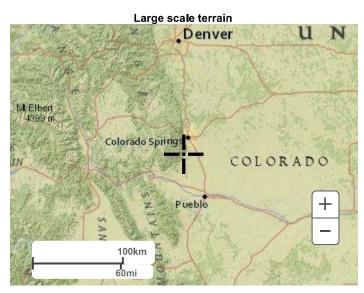
Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

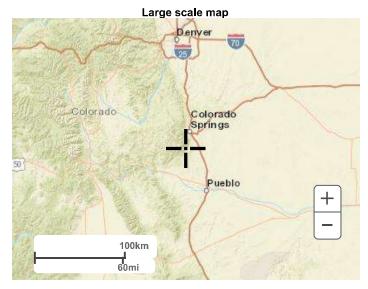
Back to Top

PF graphical

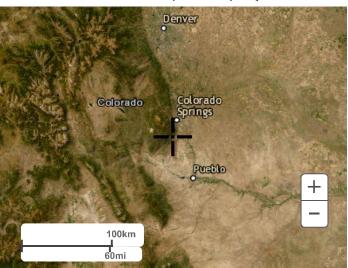
PDS-based depth-duration-frequency (DDF) curves Latitude: 38.6615°, Longitude: -104.8673°


NOAA Atlas 14, Volume 8, Version 2


Created (GMT): Mon Sep 16 17:17:56 2024


Back to Top

Maps & aerials


Small scale terrain

Large scale aerial

Back to Top

US Department of Commerce
National Oceanic and Atmospheric Administration
National Weather Service
National Water Center
1325 East West Highway
Silver Spring, MD 20910
Questions?: HDSC.Questions@noaa.gov

Disclaimer

Kimley»Horn STANDARD FORM SF-1

	RUNO	FF COE	STANDARD FORM SET	STANDARD FORM SF-I ICIENTS - IMPERVIOUS	SF-I OUS CA	LCUL/	NOITA			
PROJECT NAME: EPC Drain PROJECT NUMBER: 196441003 CALCULATED BY: ANM CHECKED BY: SNM	PROJECT NAME: EPC Drainage Improvements - Existing Conditions OJECT NUMBER: 196441003 CALCULATED BY: AME	ments - Existi	ng Conditions					DATE:	DATE: 4/24/2025	
SOIL:	D									
	I AND LIGH.	Roofs	Streets (Paved)	Lawns						
	2-YEAR COEFF.	0.73	0.89	0.04						
	5-YEAR COEFF.	0.75	0.90	0.15	•					
	10-YEAR COEFF.	0.77	0.92	0.25						
	100-YEAR COEFF.	0.83	0.96	0.50						
	A	Roofe	Streets (Payed)	I gwns	TOTAL					
DESIGN	DESIGN	AREA	AREA	AREA	AREA					
BASIN	POINT	(AC)	(AC)	(AC)	(AC)	C(2)	C(5)	C(10)	C(100)	Imp %
Site 1 Basins										
HE-1	HE-1	0.40	1.42	0.00	1.82	0.85	0.87	0.89	0.93	98%
HE-2	HE-2	1.15	4.91	0.88	6.94	0.76	0.78	0.81	0.88	86%
HE-3	HE-3	2.66	6.48	1.51	10.65	0.73	0.76	0.79	0.86	83%
HE-4	HE-4	1.51	3.09	2.58	7.18	0.55	0.60	0.65	0.77	62%
HE-5	HE-5	2.44	6.55	3.34	12.33	0.63	0.67	0.71	0.81	71%
	SITE I SURTOTAL	8.16	22.45	8.31	38.92	0.67	0.71	0.75	0.83	77%
		21%	58%	21%	100%					
Site 2 Basins										
CC-1	CC-1	0.36	0.78	20.66	21.80	0.08	0.19	0.28	0.52	5%
CC-2	CC-2	0.00	0.11	0.16	0.27	0.39	0.46	0.52	0.69	41%
CC-3	CC-3	0.00	0.10	0.12	0.22	0.43	0.49	0.55	0.71	45%
CC-4	CC-4	0.00	0.00	0.65	0.65	0.04	0.15	0.25	0.50	0%
CC-5	CC-5	2.32	6.26	99.07	107.65	0.10	0.21	0.30	0.53	8%
CC-6a	CC-6a	0.00	0.18	0.22	0.40	0.42	0.49	0.55	0.71	45%
CC-6b	CC-6b	0.00	0.10	0.15	0.25	0.38	0.45	0.52	0.68	40%
CC-7a	CC-7a	0.00	0.20	0.21	0.41	0.45	0.52	0.58	0.72	49%
CC-7b	CC-7b	0.00	0.11	0.15	0.26	0.40	0.47	0.53	0.69	42%
CC-8a	CC-8a	0.27	0.45	4.68	5.40	0.15	0.24	0.33	0.55	13%
CC-8b	CC-8b	0.21	0.44	1.07	1.72	0.34	0.42	0.48	0.66	37%
CC-9	CC-9	0.00	0.09	0.22	0.31	0.29	0.37	0.44	0.63	29%
CC-10	CC-10	0.00	0.57	0.67	1.24	0.43	0.49	0.56	0.71	46%
CC-11	CC-11	0.00	0.60	0.59	1.19	0.47	0.53	0.59	0.73	50%
CC-12	CC-12	0.00	0.35	0.66	1.01	0.33	0.41	0.48	0.66	35%
	SITE 2 SHRTOTAL	3.16	10.34	129.28	142.78	0.12	0.22	0.31	0.54	9%
	SILE 4 SUBTOTAL	2%	7%	91%	100%					

Equation 6-7			Equation 6-10				inged)	Equation 6-9 (rearranged)	Equatic				0-0	Equation 0-0		
			180				$60V_t$	$60C_{\nu}\sqrt{S_{w}}$. 6				.33	$S_{s}^{0.33}$	$I_f = -$	
$t_i + t_t = T_c$		+10	$L = \frac{L}{L} + 10$				$=\frac{L_t}{L_t}$	L_t =	<i>t</i> , = -				$-C_5 \mathcal{N} \overline{L}$	$0.395(1.1-C_s)\sqrt{L_s}$		
9.5	11.8	35%	3.8%	330	9.5	3.9	1.0	7.0	2.0%	230	5.7	8.0%	100	0.48	1.01	CC-12
9.7	19.1	50%	4.0%	1640	9.7	6.7	4.0	20.0	4.0%	1,610	3.0	5.0%	30	0.59	1.19	CC-11
9.9	19.1	46%	4.0%	1640	9.9	6.7	4.0	20.0	4.0%	1,610	3.2	5.0%	30	0.56	1.24	CC-10
6.3	11.0	29%	8.7%	180	6.3	0.7	1.9	7.0	7.0%	80	5.6	10.0%	100	0.44	0.31	CC-9
6.5	11.8	37%	9.6%	315	6.5	0.5	6.6	20.0	11.0%	215	6.0	6.7%	100	0.48	1.72	CC-8b
10.3	14.4	13%	11.0%	800	10.3	5.7	2.0	7.0	8.5%	700	4.6	28.5%	100	0.33	5.40	CC-8a
6.4	12.1	42%	4.3%	375	6.4	1.3	3.9	20.0	3.8%	295	5.1	6.0%	80	0.53	0.26	CC-7b
6.1	12.7	49%	7.9%	485	6.1	1.1	5.7	20.0	8.0%	385	4.9	7.4%	100	0.58	0.41	CC-7a
5.7	10.8	40%	8.9%	135	5.7	0.1	7.8	20.0	15.3%	35	5.7	6.7%	100	0.52	0.25	CC-6b
7.0	14.6	45%	6.9%	830	7.0	2.4	5.3	20.0	7.0%	760	4.6	6.0%	70	0.55	0.40	CC-6a
24.2	24.2	8%	4.2%	2550	36.0	29.2	1.4	7.0	4.0%	2,450	6.8	10.0%	100	0.30	107.65	CC-5
7.2	11.4		11.9%	260	7.2	1.7	1.6	7.0	5.0%	160	5.5	23.0%	100	0.25	0.65	CC-4
5.2	10.7	45%	10.4%	125	5.2	0.0	9.4	20.0	22.0%	25	5.1	7.5%	100	0.55	0.22	CC-3
5.0	11.1	41%	8.3%	200	2.8	0.5	5.2	20.0	6.8%	170	2.3	16.6%	30	0.52	0.27	CC-2
15.0	23.9	5%	30.2%	2500	15.0	10.4	3.8	7.0	30.0%	2,400	4.6	35.0%	100	0.28	21.80	CC-1
																Site 2 Basins
8.1	17.8	71%	4.0%	1400	8.1	5.7	4.0	20.0	4.0%	1,375	2.4	3.5%	25	0.71	12.33	HE-5
8.4	18.8	62%	5.0%	1580	8.4	5.8	4.5	20.0	5.0%	1,560	2.6	3.0%	20	0.65	7.18	HE-4
6.6	16.1	83%	4.9%	1105	6.6	4.0	4.5	20.0	5.0%	1,060	2.7	3.0%	45	0.79	10.65	HE-3
8.5	15.5	86%	2.9%	990	8.5	4.3	3.5	20.0	3.0%	890	4.2	2.0%	100	0.81	6.94	HE 2
8.1	13.9	98%	1.0%	707	8.1	5.5	2.0	20.0	1.0%	665	2.5	1.0%	42	0.89	1.82	HE-1
																Site 1 Basins
	(17)	(16)	(15)	(14)	(13)	(12)	(11)	(9)	(8)	(7)	(6)	(5)	(4)	(3)	(2)	(1)
Min.	Max.	IMP.	TH SLOPE IMP.	LENGTH	ਨ	Min.	fps			Ft.	Min.		Ft		Ac	BASIN
	Te	TOTAL	TOTAL	TOTAL	COMP.	Ţ,	VEL	C,	SLOPE	LENGTH	Ţ.	SLOPE	LENGTH	C10	AREA	DESIGN
Tc		IASINS)	BANIZED B	(UR				(T)				TIME (T _i)			Α	DATA
FINAL		<i>x</i>	Te CHECK				Œ	TRAVEL TIME	TR			INITIAL			ASIN	SUB-BASIN
DAID. #2#2020	DATE									litotis	ing Conta	CHS - EXIS	196441003 AME SNM	196441003 AME SNM		PROJECT NUMBER: PROJECT NUMBER: CALCULATED BY: CHECKED BY:
	7											1	•			
						tion	ncentra	Time of Concentration	Tin						Cy "	
						1 CE_)	FORM	STANDARD FORM SF-2	A TS					上ってつ	(imlev»Horr	Z M

Kimley»Horn	orn				STO	RM I)RAIN	AGE	STA DESI	NDAI	RD FC	STANDARD FORM SF-3 STORM DRAINAGE DESIGN - RATIONAL METHOD 5 YEAR EVENT	F-3 TETH	OD 5 1	EAR	EVEN	7				
PROJECT NAME: EPC Drainage Improvements - Existing Conditions PROJECT NUMBER: 1.96E+08 CALCULATED BY: AME CHECKED BY: SNM	EPC Draina 1.96E+08 AME SNM	ge Impro	vements	Existing	Condition	ns			I10	= -1.7	5ln(T _{i,mi}	$I_{10} = -1.75 ln(T_{i,min}) + 8.847$	17					DATE: 4/24/2025	4/24/20	25	
				DIRE	DIRECT RUNOFF	OFF			T	TAL I	TOTAL RUNOFF	Æ	STREET	ET	P	PIPE	4	TRAVEL	EL TIME	Æ	REMARKS
STORM LINE	DESIGN POINT	DESIGN BASIN	AREA (AC)	RUNOFF COEFF	tc (min)	C*A(ac)	I (in/hr)	Q (cfs)	tc(max)	S(C*A) (ac)	I (in/hr)	Q (cfs)	SLOPE (%)	STREET FLOW(cfs)	DESIGN FLOW(cfs)	SLOPE (%) PIPE	SIZE (in)	LENGTH (ft)	VELOCIT Y	tt (min)	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)		ш	(17)	(18)	(19)	(20)	(21)	(22)
Site 1 Basins																					
	HE-1	HE-1	1.82	0.87	8.1	1.58	4.45	7.0												Ц	
	HE-2	HE-2	6.94	0.78	8.5	5.41	5.10	27.6													
	HE-3	HE-3	10.65	0.76	6.6	8.05	5.54	44.6													
	HE-4	HE-4	7.18	0.60	8.4	4.30	5.13	22.0													
	HE-5	HE-5	12.33	0.67	8.1	8.23	5.19	42.7	_		_					_	_				
Site 2 Basins																					
	CC-1	CC-1	21.80	0.19	15.0	4.07	3.52	14.3													
	CC-2	CC-2	0.27	0.46	5.0	0.12	5.17	0.6													
	CC-3	CC-3	0.22	0.49	5.2	0.11	5.12	0.6													
	CC-4	CC4	0.65	0.15	7.2	0.10	4.63	0.5													
	CC-5	CC-5	107.65	0.21	24.2	22.23	2.81	62.4													
	CC-6a	CC-6a	0.40	0.49	7.0	0.20	4.66	0.9									_				
	CC-6b	СС-6ь	0.25	0.45	5.7	0.11	4.96	0.6									-				
	CC-7a	CC-7a	0.41	0.52	6.1	0.21	4.88	1.0													
	CC-7b	CC-7b	0.26	0.47	6.4	0.12	4.80	0.6													
	CC-8a	CC-8a	5.40	0.24	10.3	1.31	4.08	5.3													
	CC-8b	СС-8ь	1.72	0.42	6.5	0.71	4.77	3.4													
	CC-9			0.37	6.3	0.11	4.82	0.5													
	Ļ	CC-9	0.31	4.00		2 61		'n									_				
	Ш	CC-10	0.31 1.24	0.49	9.9	0.01	4.15	2.3												L	
	$\vdash \vdash \vdash$	CC-10 CC-11	0.31 1.24 1.19	0.49	9.9 9.7	0.63	4.15 4.17	2.6							_						

Kimley»Horn	_				STOI	₹M D	RAIN	AGEI	DESI	GN-R	ATIO	STANDARD FORM SF-3 STORM DRAINAGE DESIGN - RATIONAL METHOD 10 YEAR EV	ETH()D 1() YEAI	R EVI	ENT				
PROJECT NAME: EPC Drainage Improvements - Existing Conditions PROJECT NUMBER: 1.96E+08 CALCULATED BY: AME CHECKED BY: SNM	Drainage 1 E+08	mprove	ments -	Existing (Condition	s			1,	o = -1.7	'5ln(T _{i.m}	$I_{10} = -1.75 ln(T_{i,min}) + 8.847$	1 7					DATE: 4/24/2025	4/24/20)25	
				DIRECT RUNOFF	T RUN	OFF			T	TOTAL RUNOFF	RUNOI	FF	STREET	ET		PIPE		TRAVEL	EL TI	TIME	REMARKS
STORM LINE	POINT DESIGN	BASIN AREA	(AC)	RUNOFF COEFF	tc (min)	C*A(ac)	I (in/hr)	Q (cfs)	tc(max)	S(C*A) (ac)	I (in/hr)	Q (cfs)	SLOPE (%)	STREET FLOW(cfs)	DESIGN FLOW(cfs)	SLOPE (%)	PIPE SIZE (in)	LENGTH (ft)	VELOCIT Y	tt (min)	
(1) (2)	H	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
Site 1 Basins																					
HE-1	\perp	+	1.82	0.89	\perp	1.61	5.19	8.4													
HE-2	+	HE-2	6.94	0.81	66	5.62	5.10	28.7													
HE-4			7.18	0.65		4.65	5.13	23.8													
HE-5	Н	Н	12.33	0.71	Ш	8.74	5.19	45.3													
Site 2 Basins																					
CC-1	Н	CC-1 2	21.80	0.52	15.0	11.38	4.11	46.7											П		
CC-2	╀	+	╀	0.69	5.0	0.19	6.03	1.1													
CC-3	╀	+	0.22	0.71	_	0.16	5.98	0.9													
CC-4	+	-	\top	0.50	\perp	0.33	5.40	1.8													
55.53	_	_	+	0.53	\perp	57.47	3.27	188.1													
CC-6b	_	-	0.25	0.68	5.7	0.17	5.79	1.0													
CC-7a	Ш	ш	Н	0.72	Щ	0.30	5.70	1.7													
CC-7b	:-7b CC-7b	-	0.26	0.69	6.4	0.18	5.61	1.0													
CC-8a	:-8a CC-8a	-	5.40	0.55	10.3	3.00	4.76	14.3													
CC-8b	2-8b CC-8b		1.72	0.66	6.5	1.13	5.57	6.3													
CC-9	C-9 CC-9	\vdash	0.31	0.63	6.3	0.20	5.63	1.1													
CC-10	:-10 CC-10		1.24	0.71	9.9	0.88	4.84	4.3													
CC-11	:-11 CC-11		1.19	0.73	9.7	0.87	4.87	4.2													
CC	CC-12 CC	CC-12 :	1.01	0.66	9.5	0.67	4.90	3.3													

															Site 2 Basins						Site 1 Basins	(1)	STORM LINE		PROJECT 1 CALCUL, CHEC	Kimley»Horn
																									PROJECT NAME: EPC Drainage Improvements - Existing Conditions PROJECT NUMBER: 1.96E+08 CALCULATED BY: AME CHECKED BY: SNM	»Hor
CC-12	CC-11	CC-10	CC-9	CC-8b	CC-8a	CC-7b	CC-7a	CC-6b	CC-6a	CC-5	CC-4	CC-3	CC-2	CC-1		HE-5	HE-4	HE-3	HE-2	HE-1		(2)	DESIGN POINT		°C Drainag .96E+08 ME	ij
CC-12	CC-11	CC-10	CC-9	CC-8b	CC-8a	CC-7b	CC-7a	CC-6b	CC-6a	CC-5	CC-4	CC-3	CC-2	CC-1		HE-5	HE-4	HE-3	HE-2	HE-1		(3)	DESIGN BASIN		ge Impro	
1.01	1.19	1.24	0.31	1.72	5.40	0.26	0.41	0.25	0.40	107.65	0.65	0.22	0.27	21.80		12.33	7.18	10.65	6.94	1.82		(4)	AREA (AC)		vements	
0.66	0.73	0.71	0.63	0.66	0.55	0.69	0.72	0.68	0.71	0.53	0.50	0.71	0.69	0.52		0.81	0.77	0.86	0.88	0.93		(5)	RUNOFF COEFF	DIRE	Existing	
9.5	9.7	9.9	6.3	6.5	10.3	6.4	6.1	5.7	7.0	24.2	7.2	5.2	5.0	15.0		8.1	8.4	6.6	8.5	8.1		(6)	te (min)	DIRECT RUNOFF	Conditio	STO
0.67	0.87	0.88	0.20	1.13	3.00	0.18	0.30	0.17	0.28	57.47	0.33	0.16	0.19	11.38		9.98	5.51	9.18	6.11	1.70		(7)	C*A(ac)	VOFF	ms	RM D
7.05	7.01	6.96	8.10	8.01	6.85	8.07	8.20	8.33	7.82	4.71	7.77	8.60	8.68	5.91		7.47	7.38	7.97	7.34	7.47		(8)	I (in/hr)			RAIN.
4.7	6.1	6.1	1.6	9.1	20.5	1.5	2.4	1.4	2.2	270.6	2.5	1.3	1.6	67.2		74.5	40.6	73.2	44.8	12.7		(9)	Q (cfs)			AGE I
																						(10)	tc(max)	Ţ	, <u>.</u> .	ST/ DESIG
																						(11)	S(C*A) (ac)	OTAL	₀₀ = -2	NDA N-R
																						(12)	I (in/hr)	TOTAL RUNOFF	.52ln(T _i	RD FO
																						(13)	Q (cfs)	FF	$I_{100} = -2.52 ln(T_{lmin}) + 12.735$	STANDARD FORM SF-3 STORM DRAINAGE DESIGN - RATIONAL METHOD 100 YEAR EV
																						(14)	SLOPE (%)	STREET	2.735	F-3 IETHO
																						(15)	STREET FLOW(cfs)	EET)D 10(
																						(16)	DESIGN FLOW(cfs)) YEA
																						(17)	SLOPE (%)	PIPE		R EVI
																						(18)	PIPE SIZE (in)			ENT
																						(19)	LENGTH (ft)	TRAVEL	DATE	
																						(20)	VELOCIT Y	EL TIME	DATE: 4/24/2025	
																						(21)	tt (min)	Æ	25	
																						(22)		REMARKS		

PROJECT NAME: EPC Drainage Improvements - Existing Conditions PROJECT NUMBER: 196441003

PROJECT NUMBER: 196441 CALCULATED BY: AME CHECKED BY: SNM

CHECKED BY	: SNM						
	EXI	STING RATIONAL	. CALCULATIONS S	UMMARY			
DECICN DOINT	TDIDLITA DV DA CINIC	TRIBUTARY AREA	IMPEDVIOLICNECC		PEAK FLO	OWS (CFS)	
DESIGN POINT	TRIBUTARY BASINS	(AC)	IMPERVIOUSNESS	Q2	Q5	Q10	Q100
Site 1 Basins							
HE-1	HE-1	1.82	98%	5.52	7.02	8.38	12.67
HE-2 ¹	HE-2	6.94	86%	18.30	23.67	28.69	44.85
HE-3	HE-3	10.65	83%	29.42	38.25	46.47	73.23
HE-4	HE-4	7.18	62%	13.86	18.89	23.84	40.64
HE-5 ¹	HE-5	12.33	71%	27.47	36.58	45.34	74.54
	SITE 1 TOTAL	38.92	77%	94.57	124.42	152.72	245.92
Site 2 Basins CC-1	CC-1	21.80	5%	5.01	14 22	46.72	67.22
			- , -		14.33		
CC-2	CC-2	0.27	41%	0.43	0.64	1.12	1.61
CC-3	CC-3	0.22	45%	0.38	0.55	0.93	1.34
CC-4	CC-4	0.65	0%	0.10	0.45	1.75	2.52
CC-5	CC-5	107.65	8%	25.21	62.38	188.12	270.62
CC-6a	CC-6a	0.40	45%	0.63	0.91	1.54	2.21
CC-6b	CC-6b	0.25	40%	0.38	0.56	0.99	1.43
CC-7a	CC-7a	0.41	49%	0.73	1.03	1.69	2.43
CC-7b	CC-7b	0.26	42%	0.40	0.58	1.01	1.46
CC-8a	CC-8a	5.40	13%	2.56	5.34	14.26	20.53
CC-8b	CC-8b	1.72	37%	2.24	3.41	6.30	9.06
CC-9	CC-9	0.31	29%	0.34	0.55	1.11	1.59
CC-10	CC-10	1.24	46%	1.77	2.54	4.27	6.14
CC-11	CC-11	1.19	50%	1.86	2.62	4.24	6.10
CC-12	CC-12	1.01	35%	1.13	1.74	3.26	4.70
	SITE 2 TOTAL	142.78	9%	43.14	97.63	277.31	398.97

DATE: 4/24/2025

Assumed half the calculated flow from this offsite basin will flow onsite for each storm event.

Kimley»Horn PROJECT NAME: EPC Drainage Improvements - Proposed Conditions STANDARD FORM SF-1 RUNOFF COEFFICIENTS - IMPERVIOUS CALCULATION DATE: 4/24/2025

	0.74	0 21	0.22	0.12	142.78	129.28	10.34	3.16	SITE 2 STRTOTAL	
35%	0.66	0.48	0.41	0.33	1.01	0.66	0.35	0.00	CC-12	CC-12
50%	0.73	0.59	0.53	0.47	1.19	0.59	0.60	0.00	CC-11	CC-11
46%	0.71	0.56	0.49	0.43	1.24	0.67	0.57	0.00	CC-10	CC-10
29%	0.63	0.44	0.37	0.29	0.31	0.22	0.09	0.00	CC-9	CC-9
37%	0.66	0.48	0.42	0.34	1.72	1.07	0.44	0.21	CC-8b	CC-8b
13%	0.55	0.33	0.24	0.15	5.40	4.68	0.45	0.27	CC-8a	CC-8a
42%	0.69	0.53	0.47	0.40	0.26	0.15	0.11	0.00	CC-7b	CC-7b
49%	0.72	0.58	0.52	0.45	0.41	0.21	0.20	0.00	CC-7a	CC-7a
40%	0.68	0.52	0.45	0.38	0.25	0.15	0.10	0.00	CC-6b	CC-6b
45%	0.71	0.55	0.49	0.42	0.40	0.22	0.18	0.00	CC-6a	CC-6a
8%	0.53	0.30	0.21	0.10	107.65	99.07	6.26	2.32	CC-5	CC-5
0%	0.50	0.25	0.15	0.04	0.65	0.65	0.00	0.00	CC-4	CC-4
45%	0.71	0.55	0.49	0.43	0.22	0.12	0.10	0.00	CC-3	CC-3
41%	0.69	0.52	0.46	0.39	0.27	0.16	0.11	0.00	CC-2	CC-2
5%	0.52	0.28	0.19	0.08	21.80	20.66	0.78	0.36	CC-1	CC-1
										Site 2 Basins
					100%	21%	58%	21%	SITE I SUBTOTAL	
77%	0.83	0.75	0.71	0.67	38.92	8.31	22.45	8.16		
71%	0.81	0.71	0.67	0.63	12.33	3.34	6.55	2.44	HE-5	HE-5
62%	0.77	0.65	0.60	0.55	7.18	2.58	3.09	1.51	HE-4	HE-4
83%	0.86	0.79	0.76	0.73	10.65	1.51	6.48	2.66	HE-3	HE-3
86%	0.88	0.81	0.78	0.76	6.94	0.88	4.91	1.15	HE-2	HE-2
98%	0.93	0.89	0.87	0.85	1.82	0.00	1.42	0.40	HE-1	HE-1
										Site 1 Basins
Imp %	C(100)	C(10)	C(5)	C(2)	(AC)	(AC)	(AC)	(AC)	POINT	BASIN
					AREA	AREA	Streets (Paved) AREA	AREA	DESIGN	DESIGN
					3	0%	100%	90%	IMPERVIOUS %	
						0.50	0.96	0.83	100-YEAR COEFF.	
						0.25	0.92	0.77	10-YEAR COEFF.	
						0.15	0.90	0.75	5-YEAR COEFF.	
						0.04	0.89	0.73	2-YEAR COEFF.	
						AREA	AREA	AREA	LAND USE:	
						Lawns	Streets (Paved)	Roofs		
									D	SOIL:
									: HMM	CHECKED BY: HMM
									: AME	CALCULATED BY: AME

Equation 6-7		10	Equation 6-10				anged)	Equation 6-9 (rearranged)	Equatio				6-8	Equation 6-8		
$t_i + t_t = T_c$		10	$t_c = \frac{L}{180} + 10$.21			$=\frac{L_t}{60V_t}$	$=\frac{L_t}{60C_v\sqrt{S_w}}=$	$t_t = -\frac{1}{6}$				$=\frac{0.395(1.1-C_5)\sqrt{L_s}}{S_s^{0.33}}$	0.395(1.1	$t_i =$	
9.5	11.8	35%	3.8%	330	9.5	3.9	1.0	7.0	2.0%	230	5.7	8.0%	100	0.48	1.01	CC-12
9.7	19.1	50%	4.0%	1640	9.7	6.7	4.0	20.0	4.0%	1,610	3.0	5.0%	30	0.59	1.19	CC-11
9.9	19.1	46%	4.0%	1640	9.9	6.7	4.0	20.0	4.0%	1,610	3.2	5.0%	30	0.56	1.24	CC-10
6.3	11.0	29%	8.7%	180	6.3	0.7	1.9	7.0	7.0%	80	5.6	10.0%	100	0.44	0.31	CC-9
6.5	11.8	37%	9.6%	315	6.5	0.5	6.6	20.0	11.0%	215	6.0	6.7%	100	0.48	1.72	CC-8b
10.3	14.4	13%	11.0%	800	10.3	5.7	2.0	7.0	8.5%	700	4.6	28.5%	100	0.33	5.40	CC-8a
6.4	12.1	42%	4.3%	375	6.4	1.3	3.9	20.0	3.8%	295	5.1	6.0%	80	0.53	0.26	CC-7b
6.1	12.7	49%	7.9%	485	6.1	1.1	5.7	20.0	8.0%	385	4.9	7.4%	100	0.58	0.41	CC-7a
5.7	10.8	40%	8.9%	135	5.7	0.1	7.8	20.0	15.3%	35	5.7	6.7%	100	0.52	0.25	CC-6b
7.0	14.6	45%	6.9%	830	7.0	2.4	5.3	20.0	7.0%	760	4.6	6.0%	70	0.55	0.40	CC-6a
24.2	24.2	8%	4.2%	2550	36.0	29.2	1.4	7.0	4.0%	2,450	6.8	10.0%	100	0.30	107.65	CC-5
7.2	11.4		11.9%	260	7.2	1.7	1.6	7.0	5.0%	160	5.5	23.0%	100	0.25	0.65	CC-4
5.2	10.7	45%	10.4%	125	5.2	0.0	9.4	20.0	22.0%	25	5.1	7.5%	100	0.55	0.22	CC-3
5.0	11.1	41%	8.3%	200	2.8	0.5	5.2	20.0	6.8%	170	2.3	16.6%	30	0.52	0.27	CC-2
15.0	23.9	5%	30.2%	2500	15.0	10.4	3.8	7.0	30.0%	2,400	4.6	35.0%	100	0.28	21.80	CC-1
]										Site 2 Basins
8.1	17.8	71%	4.0%	1400	8.1	5.7	4.0	20.0	4.0%	1,375	2.4	3.5%	25	0.71	12.33	HE-5
8.4	18.8	62%	5.0%	1580	8.4	5.8	4.5	20.0	5.0%	1,560	2.6	3.0%	20	0.65	7.18	HE-4
6.6	16.1	83%	4.9%	1105	6.6	4.0	4.5	20.0	5.0%	1,060	2.7	3.0%	45	0.79	10.65	HE-3
8.5	15.5	86%	2.9%	990	8.5	4.3	3.5	20.0	3.0%	890	4.2	2.0%	100	0.81	6.94	HE-2
8.1	13.9	98%	1.0%	707	8.1	5.5	2.0	20.0	1.0%	665	2.5	1.0%	42	0.89	1.82	HE-1
																Site 1 Basins
	(17)	(16)	(15)	(14)	(13)	(12)	(11)	(9)	(8)	(7)	6	(5)	(4)	(3)	(2)	(1)
Min.	Max.	IMP.	SLOPE	LENGTH	tc	Min.	fps		%	Ft.	Min.	%	Ft		Ac	BASIN
	Te	TOTAL	TOTAL	TOTAL	COMP.	\mathbf{T}_{t}	VEL	C_v	SLOPE	LENGTH	T_i	SLOPE	LENGTH	C10	AREA	DESIGN
FINAL Te		K (ASINS)	Te CHECK (URBANIZED BASINS)	(URI			Æ	TRAVEL TIME (T_i)	TR			INITIAL TIME (T _i)	T I		'ASIN	SUB-BASIN DATA
DATE: 4/24/2025	DATE									ditions	osed Conc	nents - Prop	EPC Drainage Improvements - Proposed Conditions 196441003 AME HMM	EPC Drainas 196441003 AME HMM		PROJECT NAME: PROJECT NUMBER: CALCULATED BY: CHECKED BY:
						поп	THE OF COHCERN ANOT	ne or Co	1							
						tion 2	maantro I	as of Co	- 1 5 1 5						icy m	
						CE 3	STANDARD FORM SE-2	ND ARD	CT A					I Orn	Kimlev » Horn	Z:3

Kimley»Horn	m				STO	RM I	ORAIN	AGE I	STA	NDAI	ATIO	STANDARD FORM SF-3 ESIGN - RATIONAL ME	STANDARD FORM SF-3 STORM DRAINAGE DESIGN - RATIONAL METHOD 5 YEAR EVI	D 5 Y	EAR	EVENT	Ŧ				
PROJECT NAME: EPC Drainage Improvements - Proposed Conditions PROJECT NUMBER: 1.96E+08 CALCULATED BY: AME CHECKED BY: HMM	EPC Draina 1.96E+08 AME HMM	age Impro	ovements	- Propose	d Conditic	snc			I ₅ :	= -1.50	$\ln(T_{i,min}$	$I_5 = -1.50 \ln(T_{i,min}) + 7.583$						DATE: 4/24/2025	4/24/20:	25	
				DIRE	DIRECT RUNOFF	OFF			T)TAL F	TOTAL RUNOFF	Ŧ.	STREET	т	Pl	PIPE	Н	TRAVEL	EL TIME	ME	REMARKS
STORM LINE	DESIGN POINT	DESIGN BASIN	AREA (AC)	RUNOFF COEFF	tc (min)	C*A(ac)	I (in/hr)	Q (cfs)	tc(max)	S(C*A) (ac)	I (in/hr)	Q (cfs)	SLOPE (%) STREET	FLOW(cfs)	DESIGN FLOW(cfs)	SLOPE (%) PIPE	SIZE (in)	LENGTH (ft)	VELOCIT Y	tt (min)	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14) ((15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
Site 1 Basins																					
	HE-1	I-3H	1.82	0.87	8.1	1.58	4.45	7.0													
	HE-2	HE-2	6.94	0.78	8.5	5.41	4.37	23.7													
	HE-3	HE-3	10.65	0.76	6.6	8.05	4.75	38.2													
	HE-4	HE-4	7.18	0.60	8.4	4.30	4.39	18.9													
	HE-5	HE-5	12.33	0.67	8.1	8.23	4.45	36.6	L	_	_		_	F	_	L	F		L	L	
Site 2 Basins																					
	CC-1	CC-1	21.80	0.19	15.0	4.07	3.52	14.3						-							
	CC-2	25.7	0.27	0.40	5.0	0.12	513	0.6	_		1		1	+		+	+				
	CC-4	CC4	0.65	0.15	_	0.10	4.63	0.5						4		_	\dashv				
	CC-5	CC-5	107.65	0.21	24.2	22.23	2.81	62.4													
	CC-6a	CC-6a	0.40	0.49	7.0	0.20	4.66	0.9													
	CC-6b	CC-6b	0.25	0.45	5.7	0.11	4.96	0.6													
	CC-7a	CC-7a	0.41	0.52	6.1	0.21	4.88	1.0													
	CC-7b	CC-7b	0.26	0.47	6.4	0.12	4.80	0.6													
	CC-8a	CC-8a	5.40	0.24	10.3	1.31	4.08	5.3													
	CC-8b	CC-8b	1.72	0.42	6.5	0.71	4.77	3.4													
	CC-9	CC-9	0.31	0.37	6.3	0.11	4.82	0.5													
	CC-10	CC-10	1.24	0.49	9.9	0.61	4.15	2.5													
	CC-11	CC-11	1.19	0.53	9.7	0.63	4.17	2.6													
	CC-12	CC-12	1.01	0.41	9.5	0.41	4.20	1.7													

Kimley»Horr	orn				STO	RM D	RAIN	AGE I	ST/ DESIG	NDAI 3N - R	RD FO	STANDARD FORM SF-3 STORM DRAINAGE DESIGN - RATIONAL METHOD 10 YEAR EVI	F-3 IETH()D 10	YEAR	EVENT	T				
PROJECT NAME: EPC Drainage Improvements - Proposed Conditions PROJECT NUMBER: 1.96E+08 CALCULATED BY: AME CHECKED BY: HMM	EPC Draina 1.96E+08 AME HMM	ge Impro	vements	- Propose	d Conditi	ons			I ₁₀	= -1.7	'5ln(T _{i.m}	$I_{10} = -1.75 ln(T_{1min}) + 8.847$	¥7					DATE: 4/24/2025	1/24/202	.	
				DIRE	DIRECT RUNOFF	OFF			T	OTAL]	TOTAL RUNOFF	FF	STREET	ET	P	PIPE		RAVEL	L TIME	Œ	REMARKS
STORM LINE	DESIGN POINT	DESIGN BASIN	AREA (AC)	RUNOFF COEFF	tc (min)	C*A(ac)	I (in/hr)	Q (cfs)	tc(max)	S(C*A) (ac)	I (in/hr)	Q (cfs)	SLOPE (%)	STREET FLOW(cfs)	DESIGN FLOW(cfs)	SLOPE (%) PIPE	SIZE (in) LENGTH	(ft)	VELOCIT Y	tt (min)	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	\vdash	(17)	(18) ((19)	(20)	(21)	(22)
Site 1 Basins																					
	HE-1	HE-1	1.82	0.89	8.1	1.61	5.19	8.4												Н	
	HE-2	HE-2	6.94	0.81	8.5	5.62	5.10	28.7													
	HE-3	HE-3	10.65	0.79	6.6	8.39	5.54	46.5													
	HE-4	HE-4	7.18	0.65	8.4	4.65	5.13	23.8													
	HE-5	HE-5	12.33	0.71	8.1	8.74	5.19	45.3							L	_	H				
Site 2 Basins																					
	CC-1	CC-1	21.80	0.52	15.0	11.38	4.11	46.7									Н				
	CC-2	CC-2	0.27	0.69	5.0	0.19	6.03	1.1													
	CC-3	CC-3	0.22	0.71	5.2	0.16	5.98	0.9													
	CC-4	CC-4	0.65	0.50	7.2	0.33	5.40	1.8													
	CC-5	CC-5	107.65	0.53	24.2	57.47	3.27	188.1										L		_	
		CC-6a	0.40	0.71	7.0	0.28	5.44	1.5								+	+			+	
	CC-7a	CC-7a	0.41	0.72	6.1	0.30	5.70	1.7								_	+		_	+	
	Ш	CC-7b	0.26	0.69	6.4	0.18	5.61	1.0													
	CC-8a	CC-8a	5.40	0.55	10.3	3.00	4.76	14.3													
	CC-8b	CC-8b	1.72	0.66	6.5	1.13	5.57	6.3													
		CC-9	0.31	0.63	6.3	0.20	5.63	1.1													
	CC-10	CC-10	1.24	0.71	9.9	0.88	4.84	4.3													
	CC-11	CC-11	1.19	0.73	9.7	0.87	4.87	4.2													
	CC-12	CC-13	101	0 66	9 5	0.67	4 90	ıı vi								_	_			-	

Kimley»Horn	orn				STOR	RM DI	RAIN	AGE I	ST.	ANDA EN - R	RD FO	STANDARD FORM SF-3 STORM DRAINAGE DESIGN - RATIONAL METHOD 100 YEAR EV	F-3 ETHO	D 100	YEAI	₹ EVE	ENT				
PROJECT NAME: EPC Drainage Improvements - Proposed Conditions PROJECT NUMBER: 1.96E+08 CALCULATED BY: AME CHECKED BY: HMM	EPC Drains 1.96E+08 AME HMM	ıge İmpro	vements	- Propose	d Conditic	ons			<u> </u>	00 = -2.	.52ln(T,	$I_{100} = -2.52 \ln(T_{i,min}) + 12.735$.735					DATE:	DATE: 4/24/2025	25	
				DIRE	DIRECT RUNOFF	OFF			T	TOTAL RUNOFF	RUNO	FF	STREET	ET	P	PIPE		TRAVEL	EL TIME	ME	REMARKS
STORM LINE	DESIGN POINT	DESIGN BASIN	AREA (AC)	RUNOFF COEFF	te (min)	C*A(ac)	I (in/hr)	Q (cfs)	tc(max)	S(C*A) (ac)	I (in/hr)	Q (cfs)	SLOPE (%)	STREET FLOW(cfs)	DESIGN FLOW(cfs)	SLOPE (%) PIPE	SIZE (in)	LENGTH (ft)	VELOCIT Y	tt (min)	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
Site 1 Basins																					
	HE-1	HE-1	1.82	0.93	8.1	1.70	7.47	12.7									$\frac{1}{1}$				
	HE-2	HE-2	6.94	0.88	8.5	6.11	7.34	44.8													
	HE-4	HE-4	7.18	0.77	8.4	5.51	7.38	40.6													
	HE-5	HE-5	12.33	0.81	8.1	9.98	7.47	74.5													
Site 2 Basins																					
	CC-1	CC-1	21.80	0.52	15.0	11.38	5.91	67.2													
	CC-2	CC-2	0.27	0.69	5.0	0.19	8.68	1.6													
	CC-3	CC-3	0.22	0.71	5.2	0.16	8.60	1.3													
	CC-4	CC-4	0.65	0.50	7.2	0.33	7.77	2.5													
	CC-5	CC-5	107.65	0.53	24.2	57.47	4.71	270.6													
	CC-6a	CC-6a	0.40	0.71	7.0	0.28	7.82	2.2													
	CC-6b	CC-6b	0.25	0.68	5.7	0.17	8.33	1.4													
	CC-7a	CC-7a	0.41	0.72	6.1	0.30	8.20	2.4													
	CC-7b	сс-7ь	0.26	0.69	6.4	0.18	8.07	1.5													
	CC-8a	CC-8a	5.40	0.55	10.3	3.00	6.85	20.5													
	CC-8b	CC-8b	1.72	0.66	6.5	1.13	8.01	9.1													
	CC-9	CC-9	0.31	0.63	6.3	0.20	8.10	1.6													
	CC-10	CC-10	1.24	0.71	9.9	0.88	6.96	6.1													
	CC-11	CC-11	1.19	0.73	9.7	0.87	7.01	6.1													
	CC-12	CC-12	1.01	0.66	9.5	0.67	7.05	4.7													
-						ŀ											ļ				

PROJECT NAME: EPC Drainage Improvements - Proposed Conditions

PROJECT NUMBER: 196441003 CALCULATED BY: AME CHECKED BY: HMM

PROPOSED RATIONAL CALCULATIONS SUMMARY

DATE: 4/24/2025

	PF	ROPOSED RATION	IAL CALCULATIONS	SUMMARY			
DESIGN POINT	TRIBUTARY BASINS	TRIBUTARY AREA	IMPERVIOUSNESS		PEAK FL	OWS (CFS)	
DESIGNT OINT	TRIBOTART BASINS	(AC)	IIIII EITVIOOSINESS	Q2	Q5	Q10	Q100
Site 1 Basins							
HE-1	HE-1	1.82	98%	5.52	7.02	8.38	12.67
HE-2 ¹	HE-2	6.94	86%	18.30	23.67	28.69	44.85
HE-3	HE-3	10.65	83%	29.42	38.25	46.47	73.23
HE-4	HE-4	7.18	62%	13.86	18.89	23.84	40.64
HE-5 ¹	HE-5	12.33	71%	27.47	36.58	45.34	74.54
	SITE 1 TOTAL	38.92	77%	94.57	124.42	152.72	245.92
Site 2 Basins							
CC-1	CC-1	21.80	5%	5.01	14.33	46.72	67.22
CC-2	CC-2	0.27	41%	0.43	0.64	1.12	1.61
CC-3	CC-3	0.22	45%	0.38	0.55	0.93	1.34
CC-4	CC-4	0.65	0%	0.10	0.45	1.75	2.52
CC-5	CC-5	107.65	8%	25.21	62.38	188.12	270.62
CC-6a	CC-6a	0.40	45%	0.63	0.91	1.54	2.21
CC-6b	CC-6b	0.25	40%	0.38	0.56	0.99	1.43
CC-7a	CC-7a	0.41	49%	0.73	1.03	1.69	2.43
CC-7b	CC-7b	0.26	42%	0.40	0.58	1.01	1.46
CC-8a	CC-8a	5.40	13%	2.56	5.34	14.26	20.53
CC-8b	CC-8b	1.72	37%	2.24	3.41	6.30	9.06
CC-9	CC-9	0.31	29%	0.34	0.55	1.11	1.59
CC-10	CC-10	1.24	46%	1.77	2.54	4.27	6.14
CC-11	CC-11	1.19	50%	1.86	2.62	4.24	6.10
CC-12	CC-12	1.01	35%	1.13	1.74	3.26	4.70
	SITE 2 TOTAL	142.78	9%	43.14	97.63	277.31	398.97

Assumed half the calculated flow from this offsite basin will flow onsite for each storm event.

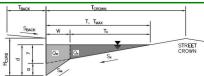
APPENDIX C - HYDRAULIC CALULATIONS

MHFD-Inlet, Version 5.03 (August 2023) INLET MANAGEMENT Worksheet Protected

INLET NAME	<u>HE-1</u>	<u>EX HE-3</u>	<u>EX HE-4</u>
Site Type (Urban or Rural)	URBAN		
Inlet Application (Street or Area)	STREET	STREET	STREET
Hydraulic Condition	In Sump	In Sump	In Sump
Inlet Type	CDOT Type R Curb Opening	Denver No. 16 Valley Grate	Denver No. 16 Valley Grate

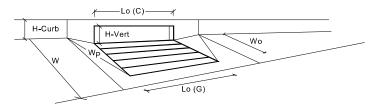
User-Defined Design Flows			
Minor Q _{Known} (cfs)	8.4	46.5	8:23
Major Q _{Known} (cfs)	12.7	73.2	40.6
Bypass (Carry-Over) Flow from Upstream	Inlets must be organized from unstrea	Talets must be organized from unstream (left) to downstream (right) in order for bypass flows to be linked	or hypass flows to be linked.
Receive Bypass Flow from:	User-Defined	User-Defined	User-Defined
Minor Bypass Flow Received, Q _b (cfs)	18.5	2.7	11.3
Major Bypass Flow Received, Q _b (cfs)	29.8	11.2	18.6
Watershed Characteristics			
Subcatchment Area (acres)			
Percent Impervious			
NRCS Soil Type			
Watershed Profile			
Overland Slope (ft/ft)			
Overland Length (ft)			
Channel Slope (ft/ft)			
Channel Length (ft)			
Minor Storm Rainfall Input			
Design Storm Return Period, T _r (years)			
One-Hour Precipitation, P_1 (inches)			
Major Storm Rainfall Input			
Design Storm Return Period, T _r (years)			

CALCULATED OUTPUT


Major Flow Bypassed Downstream, Q_b (cfs) $\qquad \qquad \qquad N/A$	Minor Flow Bypassed Downstream, Q_b (cfs) $\qquad \qquad \qquad N/A$	Major Total Design Peak Flow, Q (cfs) 42.5	Minor Total Design Peak Flow, Q (cfs) 26.9
A N/A	A N/A	5 84.4	9 53.7
N/A	N/A	59.2	35.1

MHFD-Inlet, Version 5.03 (August 2023)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

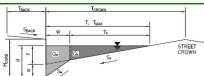

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Inlet ID: HE-1

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T_{BACK} : 15.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) S_{BACK} 0.047 ft/ft Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown H_{CURB} 6.00 nches $\mathsf{T}_{\mathsf{CROWN}}$ 20.0 Gutter Width Street Transverse Slope W = 2.00 0.061 S_X = ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) 0.137 ŕ/ft Street Longitudinal Slope - Enter 0 for sump condition S_{0} 0.000 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 20.0 20.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 6.0 12.0 Check boxes are not applicable in SUMP conditions MINOR STORM Allowable Capacity is not applicable to Sump Condition MAJOR STORM Allowable Capacity is not applicable to Sump Condition Major Storm SUMP Minor Storm SUMP

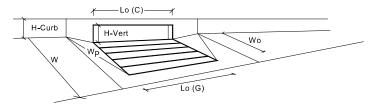
INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.03 (August 2023)

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	5	5	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	12.0	inches
Grate Information	_	MINOR	MAJOR	Override Depths
Length of a Unit Grate	L₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	$W_o =$	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	$C_w(G) =$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	_
Length of a Unit Curb Opening	$L_o(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$H_{throat} =$	6.00	6,00	inches
Angle of Throat	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	Ī t
Depth for Curb Opening Weir Equation	d _{Curb} =	0.23	0.73	nt.
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.79	1.00	
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A]
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes cloqged condition)	Q _a = [8.5	59.6	 cfs
WARNING: Inlet Capacity < Q Peak for Minor Storm	Q PEAK REQUIRED =	26.9	42.5	cfs


PROP_HE_MHFD-Inlet_v5.03, HE-1 4/24/2025, 1:31 PM

MHFD-Inlet, Version 5.03 (August 2023)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)


Project:

Inlet ID: EX HE-3

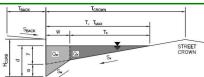
Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T_{BACK} : 6.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) S_{BACK} 0.046 ft/ft 0.012 Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown H_{CURB} 4.00 nches $\mathsf{T}_{\mathsf{CROWN}}$ 20.0 Gutter Width Street Transverse Slope W = 2.00 0.015 S_X = ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) ŕ/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition S_{0} 0.000 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{street} Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 20.0 20.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 4.0 8.0 Check boxes are not applicable in SUMP conditions MINOR STORM Allowable Capacity is not applicable to Sump Condition MAJOR STORM Allowable Capacity is not applicable to Sump Condition Major Storm SUMP Minor Storm SUMP

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.03 (August 2023)

lī	Design Information (Input)		MINOR	MAJOR	
	Type of Inlet Denver No. 16 Valley Grate	Type _ [6 Valley Grate	1
	Local Depression (additional to continuous gutter depression 'a' from above)	Type =	2.00	2,00	inches
		a _{local} =		2,00	- Inches
	Number of Unit Inlets (Grate or Curb Opening)	No =	2	- 2	-
	Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.0	5.2	inches
	Grate Information	. (c) F	MINOR	MAJOR	Override Depths
	Length of a Unit Grate	L₀ (G) =	4.00	4.00	feet
l II	Width of a Unit Grate	W _o =	1.73	1.73	feet
	Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	0.31	0.31	_
	Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	0.50	0.50	4
	Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	3.60	3.60	↓
	Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	0.60	0,60	_
	Curb Opening Information	_	MINOR	MAJOR	_
	Length of a Unit Curb Opening	$L_o(C) =$	N/A	N/A	feet
	Height of Vertical Curb Opening in Inches	H _{vert} =	N/A	N/A	inches
	Height of Curb Orifice Throat in Inches	H _{throat} =	N/A	N/A	inches
- 11	Angle of Throat	Theta =	N/A	N/A	degrees
	Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p = $	N/A	N/A	feet
	Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	N/A	N/A	
	Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	N/A	N/A	
	Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	N/A	N/A	
	Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
	Depth for Grate Midwidth	d _{Grate} =	0.36	0.46	ੀ π
	Depth for Curb Opening Weir Equation	d _{Curb} =	N/A	N/A	1 ft
	Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	0.40	0.53	1
	Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	N/A	N/A	1
	Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A]
			MINOR	MAJOR	
	Total Inlet Interception Capacity (assumes cloqged condition)	Q _a = [1.6	3.1	cfs
	WARNING: Inlet Capacity < Q Peak for Minor and Major Storms	Q PEAK REQUIRED =	53.7	84.4	cfs
	Warning 1: Dimension entered is not a typical dimension for inlet type				

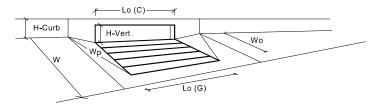
Warning 1: Dimension entered is not a typical dimension for inlet type specified.

PROP_HE_MHFD-Inlet_v5.03, EX HE-3 4/24/2025, 1:31 PM


MHFD-Inlet, Version 5.03 (August 2023)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)


Project:

Inlet ID: EX HE-4

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T_{BACK} : 4.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) S_{BACK} 0.065 ft/ft Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown H_{CURB} 4.00 nches $\mathsf{T}_{\mathsf{CROWN}}$ 20.0 Gutter Width Street Transverse Slope W = 2.00 0.017 S_X = ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) ŕ/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition S_{0} 0.000 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{street} Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 20.0 20.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 4.0 8.0 Check boxes are not applicable in SUMP conditions MINOR STORM Allowable Capacity is not applicable to Sump Condition MAJOR STORM Allowable Capacity is not applicable to Sump Condition Major Storm SUMP Minor Storm SUMP

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.03 (August 2023)

Design Information (Input)		MINOR	MAJOR	
Type of Inlet Denver No. 16 Valley Grate	Type =		6 Valley Grate	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	2.00	2,00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	Hindres
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.0	5.7	inches
Grate Information	Tonding Depth	MINOR	MAJOR	Override Depths
Length of a Unit Grate	L₀ (G) =	3.00	3,00	Ifeet
Width of a Unit Grate	W ₀ =	1.73	1.73	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	0.31	0.31	┧
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	0.50	0.50	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	3,60	3,60	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$\ddot{C}_{0}(G) =$	0.60	0,60	7
Curb Opening Information	٠, ٢	MINOR	MAJOR	_
Length of a Unit Curb Opening	L ₀ (C) =	N/A	N/A	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	N/A	N/A	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	N/A	N/A	inches
Angle of Throat	Theta =	N/A	N/A	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _D =	N/A	N/A	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	N/A	N/A	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	N/A	N/A	7
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_o(C) =$	N/A	N/A	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	0.36	0.49	Πft
Depth for Curb Opening Weir Equation	d _{Curb} =	N/A	N/A	√nt
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	0.63	0.89	7
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	N/A	N/A	7
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A]
		MINOR	MAJOR	
 Total Inlet Interception Capacity (assumes clogged condition)	Q _a = [1.1	2.4	ີ່ cfs
WARNING: Inlet Capacity < Q Peak for Minor and Major Storms	Q PEAK REQUIRED =	35.1	59.2	dcfs

4/24/2025, 1:31 PM PROP_HE_MHFD-Inlet_v5.03, EX HE-4

Worksheet for Hampton - Prop Overflow Swale

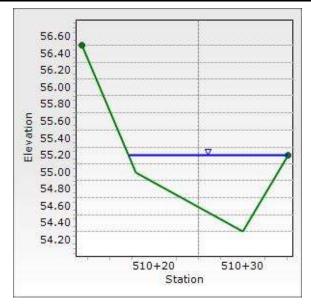
Project Description		
Friction Method	Manning Formula	
Solve For	Discharge	
Input Data		
Channel Slope	0.040 ft/ft	
Normal Depth	10.3 in	

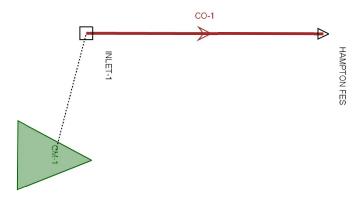
Section Definitions

Station (ft)	Elevation (ft)
510+12	56.50
510+18	55.00
510+30	54.34
510+35	55.20

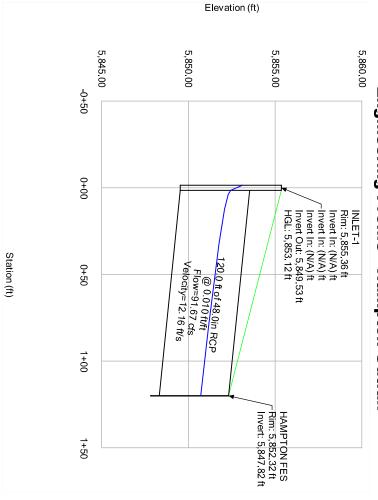
Roughness Segment Definitions

Start Station		Ending Station	Roughness Coefficient	
(510+12, 56.50)		(510+35, 55.20)		0.069
Options				
Current Roughness Weighted	Pavlovskii's			
Method	Method			
Open Channel Weighting	Pavlovskii's			
Method	Method			
Closed Channel Weighting	Pavlovskii's			
Method	Method			
Results				
Discharge	22.66 cfs			
Roughness Coefficient	0.069			
Elevation Range	54.3 to 56.5 ft			
Flow Area	8.6 ft ²			
Wetted Perimeter	17.9 ft			
Hydraulic Radius	5.8 in			
Top Width	17.80 ft			
Normal Depth	10.3 in			
Critical Depth	8.8 in			
Critical Slope	0.096 ft/ft			
Velocity	2.64 ft/s			
Velocity Head	0.11 ft			
Specific Energy	0.97 ft			
Froude Number	0.670			
Flow Type	Subcritica l			


GVF Input Data


Worksheet for Hampton - Prop Overflow Swale

GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	0.00 ft/s	
Upstream Velocity	0.00 ft/s	
Normal Depth	10.3 in	
Critical Depth	8.8 in	
Channel Slope	0.040 ft/ft	
Critical Slope	0.096 ft/ft	


Cross Section for Hampton - Prop Overflow Swale

Project Description		
Friction Method	Manning Formula	
Solve For	Discharge	
Input Data		
Channel Slope	0.040 ft/ft	
Normal Depth	10.3 in	
Discharge	22.66 cfs	

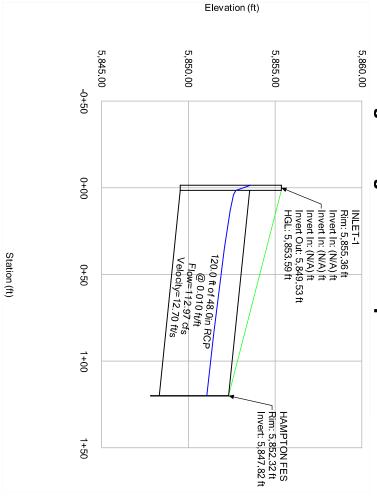
Profile Report Engineering Profile - Hampton Outfall

FlexTable: Conduit Table

5,850.71	5,852.43	144.23	91.67	12.16	0.010	120.0	5,848.32	5,849.53 HAMPTON FES	5,849.53	INLET-1	0.013	48.0 Concrete	48.0	CO-1
(ft)	(ft)													
(Out)	(In)	(cfs)			(ft/ft)	(†)	(†)		(†					
Grade Line	Grade Line	(Full Flow)	(cfs)	(ft/s)	(Calculated)	Defined)	(Stop)		(Start)	Node			(in)	
Hydraulic	Hydraulic	Capacity	Flow	Velocity	Slope	Length (User	Invert	Stop Node	Invert	Start	Manning's n	Material	Diameter	Label

П
<u>e</u>
×
\dashv
<u>a</u>
9
Ð
_
7
0
=
Ĭ
9
7
-
ש
<u></u>
P

91.67	8.500	0.710	29.290	INLET-1	CM-1
	(min)	(Rational)	(acres)		
(cfs)	Concentration	Coefficient	Defined)		
Flow (Total Out)	Time of	Runoff	Area (User	Outflow Element	Label


FlexTable: Catch Basin Table

5,852.43	5,853.12	0.68	91.67	,849.53 Standard	5,849.53	5,855.36	5,855.36	INLET-1
(ft)	(ft)				(ft)		(ft)	
Line (Out)	Line (In)	(†)	(cfs)		(Invert)	(ft)	(Ground)	
Hydraulic Grade	Hydraulic Grade	Headloss	Flow (Total Out)	Headloss Method	Elevation	Elevation (Rim)	Elevation	Label

FlexTable: Outfall Table

5,850.71	91.06	8.665	0.00		5,847.82 Free Outfall	5,847.82	5,852.32	HAMPTON FES
				(ft)				
		(min)	(cfs)	Tailwater)		(f)	(ft)	
(ft)	(cfs)	Time	Additional Flow	Defined	Condition Type	(Invert)	(Ground)	
Hydraulic Grade	Flow (Total Out)	System Flow	System	Elevation (User	Boundary	Elevation	Elevation	Label

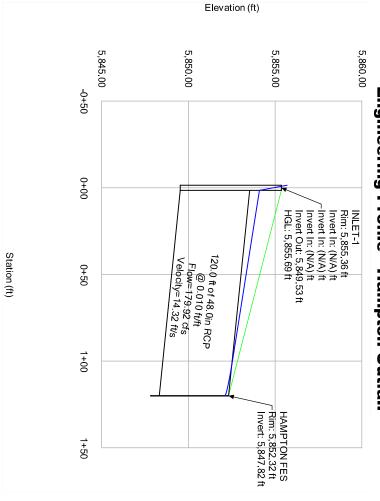
Profile Report Engineering Profile - Hampton Outfall

FlexTable: Conduit Table

5,851.09	5,852.76	144.23	114.84	12.74	0.010	120.0	5,848.32	5,849.53 HAMPTON FES	5,849.53	0.013 INLET-1	0.013	48.0 Concrete	48.0	CO-1
(ft)	(ft)								,					
(Out)	(In)	(cfs)			(ft/ft)	[#	((∄					
Grade Line	Grade Line	(Full Flow)	(cfs)	(ft/s)	(Calculated)	Defined)	(Stop)		(Start)	Node			(in)	
Hydraulic	Hydraulic		Flow	Velocity	Slope	Length (User	Invert	Stop Node	Invert	Start	Manning's n	Material	Diameter	Label

П
<u>e</u>
×
\dashv
<u>a</u>
9
Ð
_
7
0
=
Ĭ
9
7
-
ש
<u></u>
P

112.97	8.500	0.750	29.290	INLET-1	CM-1
	(min)	(Rational)	(acres)		
(cfs)	Concentration	Coefficient	Defined)		
Flow (Total Out)	Time of	Runoff	Area (User	Outflow Element	Label


П
0
×
\dashv
<u>a</u>
<u>o</u>
Ð
•
Ü
可
ក
3
a
S
Ξ,
_
7
4
ž
æ

5,852.74	5,853.59	0.85	112.97	Standard	5,849.53 Standard	5,855.36	5,855.36	INLET-1
(ft)	(ft)				(ft)		(t)	
Line (Out)	Line (In)	(ft)	(cfs)		(Invert)	(ft)	(Ground)	
Hydraulic Grade	Hydraulic Grade	Headloss	Flow (Total Out)	Headloss Method	Elevation	Elevation (Rim)	Elevation	Label

FlexTable: Outfall Table

5,851.06	112.26	8.657	0.00		5,847.82 Free Outfall	5,847.82	5,852.32	HAMPTON FES
				(ft)				
		(min)	(cfs)	Tailwater)		(f t)	(f t)	
(†	(cfs)	Time	Additional Flow	Defined	Condition Type	(Invert)	(Ground)	
Hydraulic Grade	Flow (Total Out)	System Flow	System	Elevation (User	Boundary	Elevation	Elevation	Label

Profile Report Engineering Profile - Hampton Outfall

FlexTable: Conduit Table

5,852.11	5,854.17	144.23	182.89	14.55	0.010	120.0	5,848.32	5,849.53 HAMPTON FES	5,849.53	0.013 INLET-1	0.013	48.0 Concrete	48.0	CO-1
(ft)	(ft)													
(Out)	(In)	(cfs)			(ft/ft)	(†)	(†		(†					
Grade Line	Grade Line	(Full Flow)	(cfs)	(ft/s)	(Calculated)	Defined)	(Stop)		(Start)	Node			(in)	
Hydraulic	Hydraulic	Capacity	Flow	Velocity	Slope	Length (User	Invert	Stop Node	Invert	Start	Manning's n	Material	Diameter	Label

FlexTable: Catchment Table

179.92	8.500	0.830	29.290	INLET-1	CM-1
	(min)	(Rational)	(acres)		
(cfs)	Concentration	Coefficient	Defined)		
Flow (Total Out)	Time of	Runoff	Area (User	Outflow Element	Label

FlexTable: Catch Basin Table

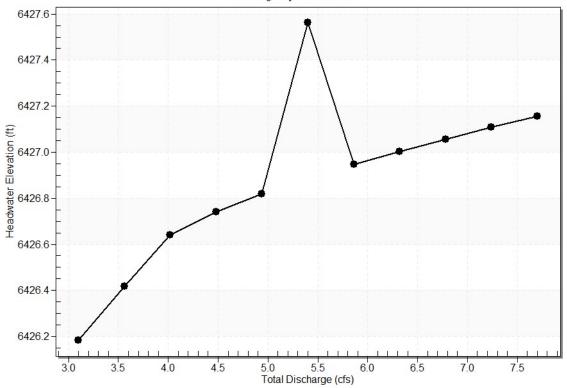
5,854.10	5,855.69	1.59	179.92	Standard	5,849.53 Standard	5,855.36	5,855.36	INLET-1
(ft)	(ft)				(ft)		(ft)	
Line (Out)	Line (In)	(†)	(cfs)		(Invert)	(†	(Ground)	
Hydraulic Grade	Hydraulic Grade	Headloss	Flow (Total Out)	Headloss Method	Elevation	Elevation (Rim)	Elevation	Label

FlexTable: Outfall Table

5,852.09	178.91	8,640	0,00	5,845.90	5,847.82 User Defined Tailwater	5,847.82	5,852.32	HAMPTON FES
				(ft)				
		(min)	(cfs)	Tailwater)		(†)	(†)	
(ft)	(cfs)	Time	Additional Flow	Defined	Condition Type	(Invert)	(Ground)	
Hydraulic Grade	Flow (Total Out)	System Flow	System	Elevation (User	Boundary	Elevation	Elevation	Label

HY-8 Culvert Analysis Report

Crossing Input: Prop 11580 Culvert


Parameter	Value	Units
DISCHARGE DATA		
Discharge Method	Minimum, Design, and	
	Maximum	
Minimum Flow	3.100	cfs
Design Flow	5.400	cfs
Maximum Flow	7.700	cfs
TAILWATER DATA		
Channel Type	Triangular Channel	
Side Slope (H:V)	3.000	_:1
Channel Slope	0.0050	ft/ft
Manning's n (channel)	0.078	
Channel Invert Elevation	6424.540	ft
Rating Curve	View	
ROADWAY DATA		
Roadway Profile Shape	Constant Roadway	
	Elevation	
First Roadway Station	43.690	ft
Crest Length	41.000	ft
Crest Elevation	6426.600	ft
Roadway Surface	Paved	
Top Width	14.000	ft

Culvert Input: Prop 11580 Culvert

Parameter	Value	Units
CULVERT DATA		
Name	Culvert 1	
Shape	Circular	
Material	Concrete	
Diameter	1.000	ft
Embedment Depth	0.000	in
Manning's n	0.012	
Culvert Type	Straight	
Inlet Configuration	Grooved End Projecting	
	(Ke=0.2)	
Inlet Depression?	No	
SITE DATA		
Site Data Input Option	Culvert Invert Data	
Inlet Station	0.000	ft
Inlet Elevation	6424.660	ft
Outlet Station	41.000	ft
Outlet Elevation	6424.540	ft
Number of Barrels	1	
Computed Culvert Slope	0.002927	ft/ft

Rating Curve Plot for crossing: Prop 11580 Culvert

Total Rating Curve Crossing: Prop 11580 Culvert

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

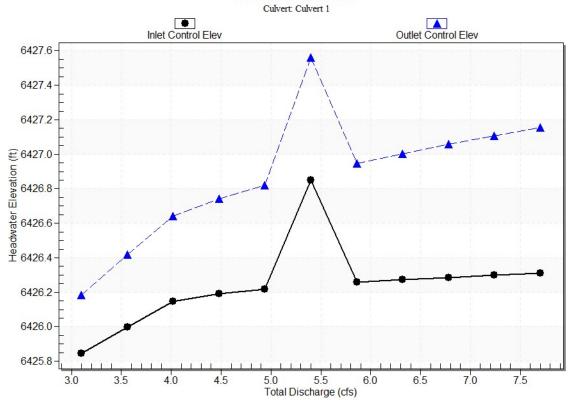
Minimum Flow: 3.10 cfs Design Flow: 5.40 cfs Maximum Flow: 7.70 cfs

Table 1 - Summary of Culvert Flows at crossing: Prop 11580 Culvert

Headwater Elevation	Total Discharge (cfs)	Culvert 1 Discharge	Roadway Discharge	Iterations
_(ft)	,	(cfs)	(cfs)	
6426.18	3,10	3.10	0.00	1
6426,42	3.56	3.56	0.00	1
6426.64	4.02	3.95	0.07	12
6426.74	4.48	4.06	0.42	7
6426.82	4.94	4.12	0.81	6
6427.56	5.40	4.17	1.22	6
6426.95	5.86	4.21	1.64	σ
6427.00	6.32	4.25	2.07	OT.
6427.06	6.78	4.28	2.50	Ω
6427.11	7.24	4.31	2.93	Ω
6427.16	7.70	4.33	3.37	4
6426,60	3,89	3.89	0.00	Overtopping

Table 2 - Culvert Summary Table: Culvert 1

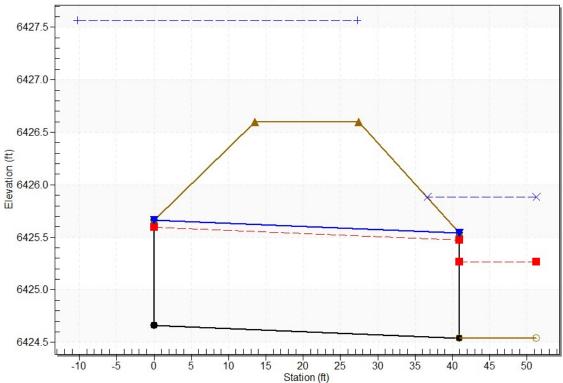
Headwater	Inlet	Outlet	WH	Flow	Normal	Critical	Outlet	Tailwater	Outlet	Tailwater
Discharge Elevation	Control	Control	/D	Type	Depth	Depth	Depth	Depth	ţ	Velocity
	Depth	Depth	(ft)		(ft)	(ft)	(ft)	(ft)		(ft/s)
	(ft)	(ft)								
6426.18	1.18	1.524		4-FFf	1.00	0.75	1.00	1.09	3.95	0.87
6426.42	1.34	1.759	1.76	4-FFf	1.00	0.81	1.00	1.15	4.53	0.90
6426.64	1.49	1.982	1.98	4-FFf	1.00	0.84	1.00	1.20	5.03	0.93
6426.74	1.53	2.081	2.08	4-FFf	1.00	0.85	1.00	1.25	5.17	0.95
6426.82	1.56	2.159	2.16	4-FFf	1.00	0.86	1.00	1.30	5.25	0.98
6427.56	2.19	2.902	2.90	4-FFf	1.00	0.94	1.00	1.34	6.88	1.00
6426.95	1.60	2.287	2.29	4-FFf	1.00	0.87	1.00	1.39	5.36	1.02
6427.00	1.61	2.344	2.34	4-FFf	1.00	0.87	1.00	1.42	5.41	1.04
6427.06	1.63	2.397	2.40	4-FFf	1.00	0.87	1.00	1.46	5.45	1.06
6427.11	1.64	2.447	2.45	4-FFf	1.00	0.87	1.00	1.50	5.48	1.07
6427.16	1.65	2.496	2.50	4-FFf	1.00	0.87	1.00	1.53	5.52	1.09
6427.16	1.65	2.496	2.50	4-FFf	1.00	0.87	1.00	1.53	5.52	1.09
	6427.16		1.65	1.65 2.496	1.65 2.496 2.50	1.65 2.496 2.50 4-FFf	1.65 2.496 2.50 4-FFf 1.00	1.65 2.496 2.50 4-FFf 1.00 0.87	1.65 2.496 2.50 4-FFf 1.00 0.87 1.00	1.65 2.496 2.50 4-FFf 1.00 0.87 1.00 1.53


Culvert Barrel Data

Culvert Barrel Type: Straight Culvert Inlet Elevation(invert): 6424.66 ft Outlet Elevation (invert): 6424.54 ft

Culvert Length: 41.00 ft Culvert Slope: 0.00 ft/ft

Culvert Performance Curve Plot: Culvert 1


Performance Curve

Water Surface Profile Plot for Culvert: Culvert 1

Crossing - Prop 11580 Culvert, Design Discharge - 5.4 cfs

Culvert - Culvert 1, Culvert Discharge - 4.2 cfs

Site Data - Culvert 1

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft
Inlet Elevation: 6424.66 ft
Outlet Station: 41.00 ft
Outlet Elevation: 6424.54 ft

Number of Barrels: 1

Culvert Data Summary - Culvert 1

Barrel Shape: Circular
Barrel Diameter: 1.00 ft
Barrel Material: Concrete
Embedment: 0.00 in
Barrel Manning's n: 0.0120
Culvert Type: Straight

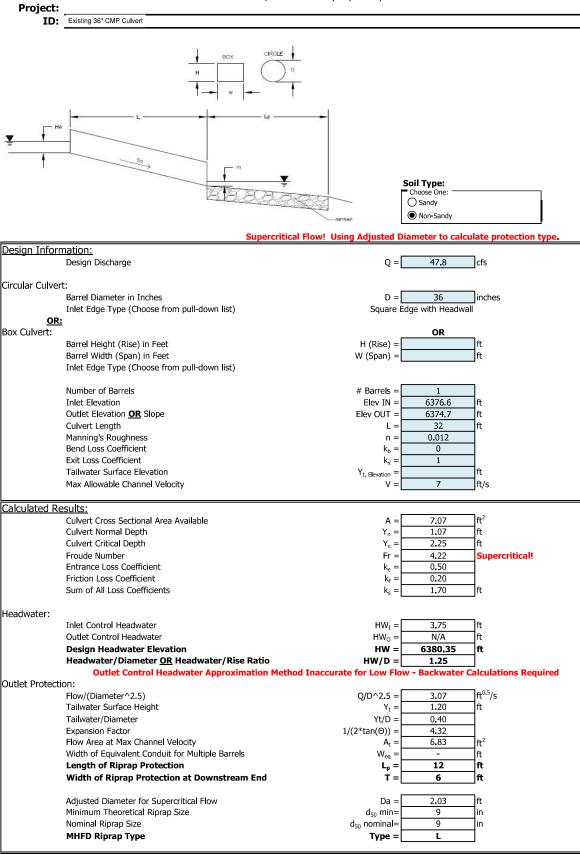
Inlet Configuration: Grooved End Projecting (Ke=0.2)

Inlet Depression: None

Tailwater Channel Data for Crossing: Prop 11580 Culvert

Tailwater Channel Option: Triangular Channel

a_side Slope (H:V): 3.00 (_:1) Channel Slope: 0.01 ft/ft Channel Manning's n: 0.0780 Channel Invert Elevation: 6424.54 ft


Roadway Data for crossing: Prop 11580 Culvert

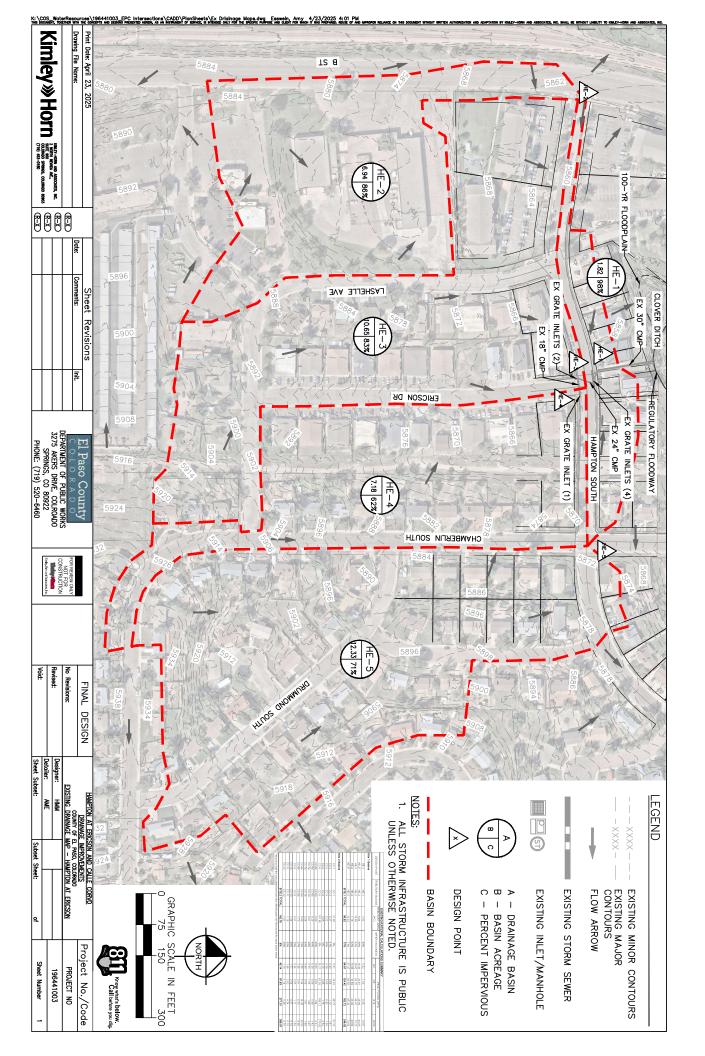
Roadway Profile Shape: Constant Roadway Elevation

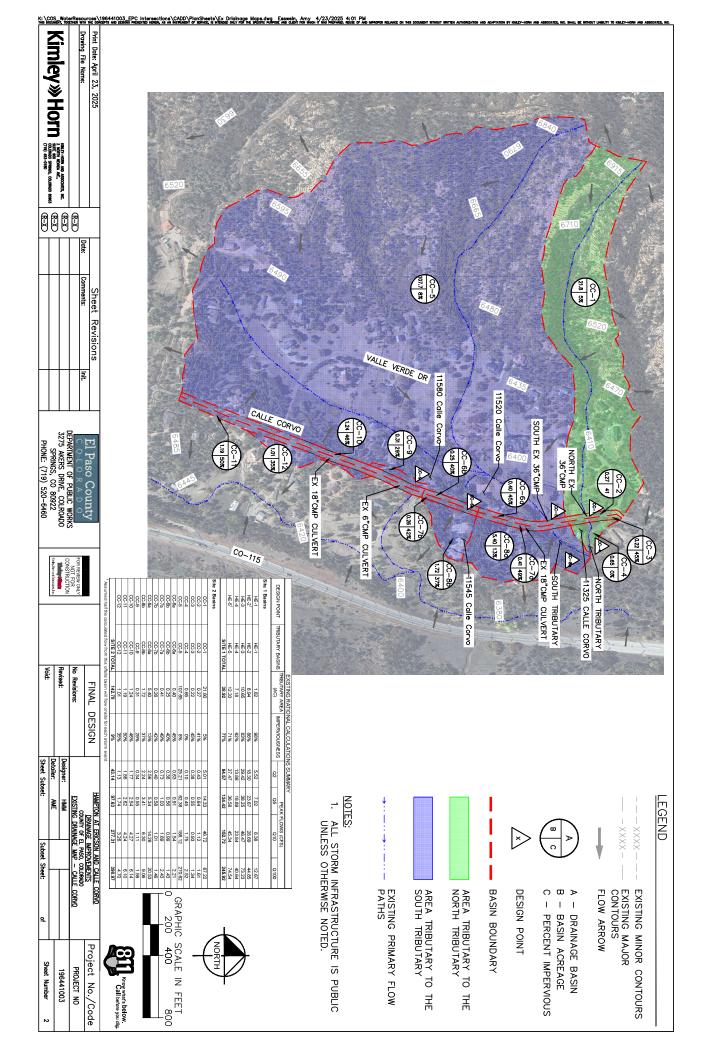
Crest Length: 41.00 ft Crest Elevation: 6426.60 ft Roadway Surface: Paved Roadway Top Width: 14.00 ft

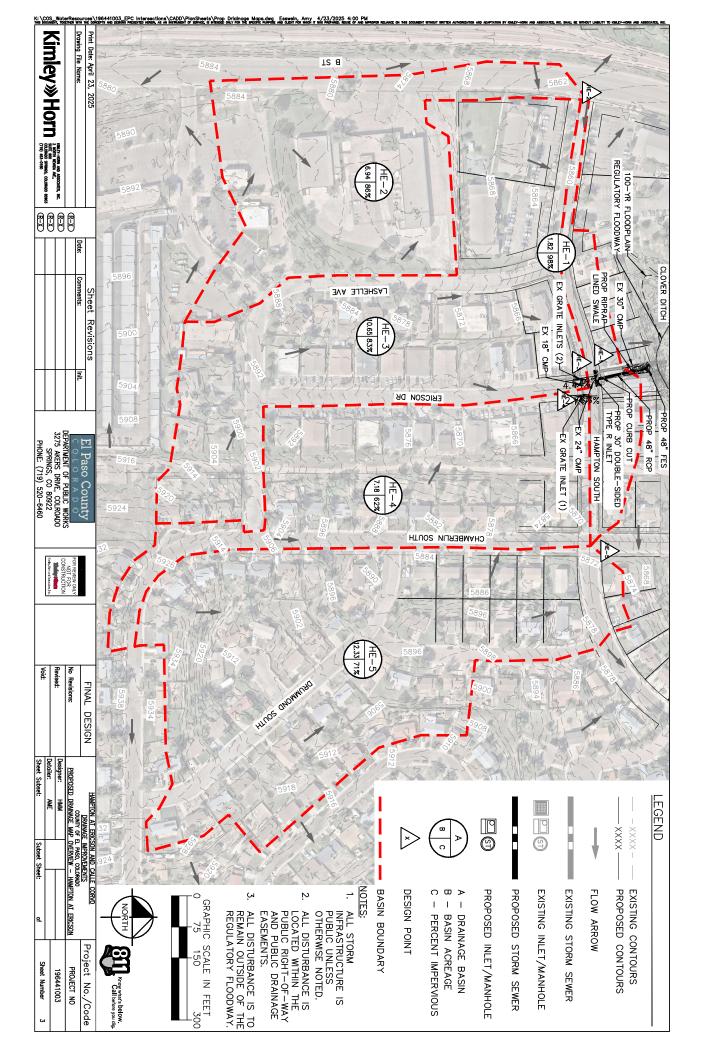
DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION

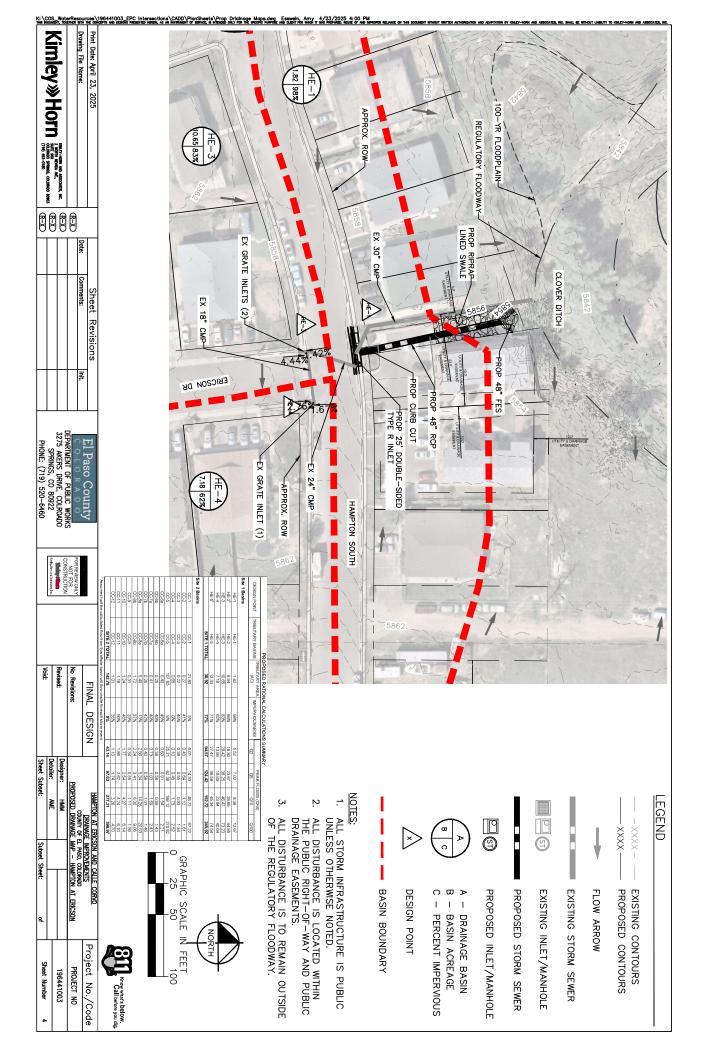
MHFD-Culvert, Version 4.00 (May 2020)

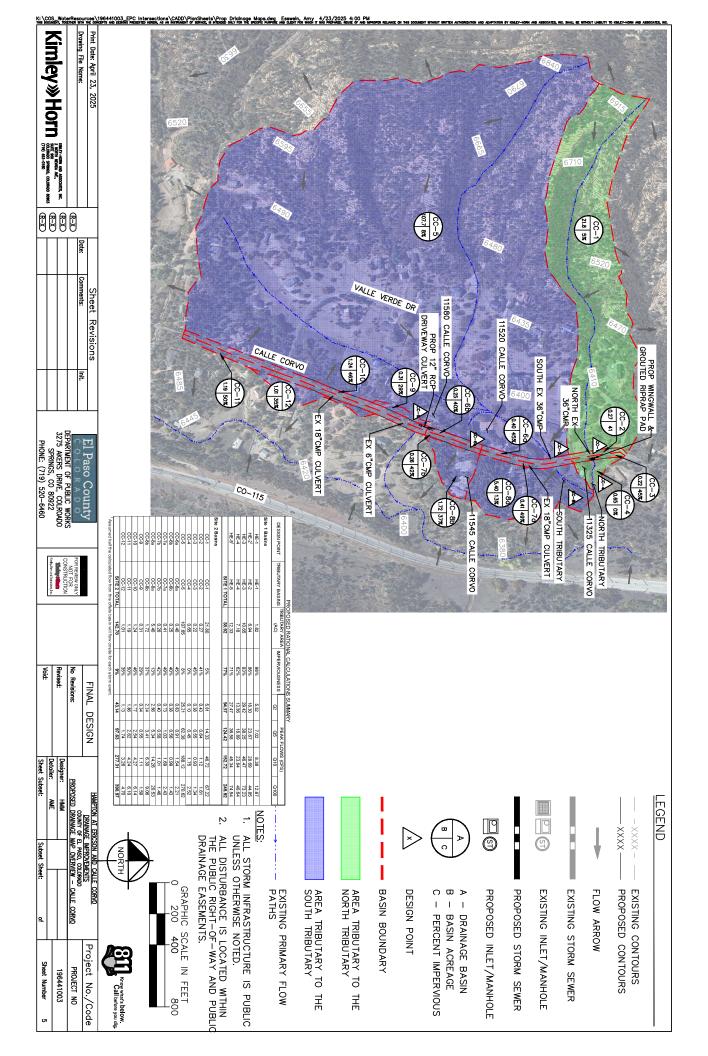
DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION


MHFD-Culvert, Version 4.00 (May 2020) Project: ID: Proposed Driveway Culvert Soil Type: Sandy Non-Sandy Design Information: Design Discharge Q =[7.7 cfs Circular Culvert: Barrel Diameter in Inches D = [12 linches Inlet Edge Type (Choose from pull-down list) Square Edge with Headwall OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) = ft Barrel Width (Span) in Feet W (Span) = Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = Inlet Elevation Elev IN = 6424.66 Outlet Elevation OR Slope Elev OUT = 6424.54 ft Culvert Length L= 41 ft Manning's Roughness 0.012 n = Bend Loss Coefficient k_b = 0 Exit Loss Coefficient k_x = 1 Tailwater Surface Elevation 7 Max Allowable Channel Velocity ft/s V = Calculated Results: Culvert Cross Sectional Area Available 0.79 Culvert Normal Depth Y_n = 1.00 ft Culvert Critical Depth $Y_c =$ 0.98 lft Froude Number Fr = Pressure flow! **Entrance Loss Coefficient** 0.50 k_e = Friction Loss Coefficient 1.09 k_f = Sum of All Loss Coefficients 2.59 Headwater: Inlet Control Headwater $HW_{I} =$ 4.60 lft Outlet Control Headwater HW_o = 4.73 ft **Design Headwater Elevation** HW = 6429.39 ft Headwater/Diameter OR Headwater/Rise Ratio HW/D = 4.73 HW/D > 1.5! Outlet Protection: ft^{0.5}/s Flow/(Diameter^2.5) Q/D^2.5 = 7.70 Tailwater Surface Height 0.40 ft Y_t = Tailwater/Diameter Yt/D = 0.40 Expansion Factor $1/(2*tan(\Theta)) =$ 1.82 Flow Area at Max Channel Velocity A_t = 1.10 ft² $W_{eq} =$ Width of Equivalent Conduit for Multiple Barrels lft **Length of Riprap Protection** 4 $L_p =$ lft. Width of Riprap Protection at Downstream End 4 ft Adjusted Diameter for Supercritical Flow Da = 7ft Minimum Theoretical Riprap Size d₅₀ min= 6 in d₅₀ nominal= Nominal Riprap Size 9 in MHFD Riprap Type Type = L


APPENDIX D - ENGINEER'S OPINION OF PROBABLE COST


Bild Item Desc Oty		\$ /25,500.00					Project I otal		
Mobilization Mobi				-	-	Г	Site 2 Total		
Model Name Bear Carp Unit Unit Unit Coart						,		Contingency	
Mobilization Mobi		L		1				Sub-Total	
Mobilization Mobi					1 F/A		F/A Erosion Control	700-70380	
Mobilization					1 F/A		F/A Landcape Removal and Restoration	700-70310	
Mobilization	10% of constru				1 LS		Traffic Control	630-00016	
Mobilization		\$	15,	15,000.00	1 LS		As-Built Surveying	625-99999	
Mobilization		\$		220.00	30 SF	2:	Culvert Headwall (3-Sided Culvert)(Type 1)	603-77001	Site
Mobilization		3 \$		200.00		,	12-inch Reinforced Concrete Pipe (CIP)	603-01125	e 2-
Mobilization		\$		200.00	1 CY		Soil Riprap (9-inch)	506-00409	Ca
Mobilization		\$		450.00	7 CY		Grouted Riprap (18 Inch)	506-00030	lle
Bid Item Desc Coty		÷ .		50.00	75 SY		Hot Mix Asphalt (Grading SX) (75) (PG 58-28)	403-34722	Со
Bid Item Desc		\$		70.00	13 CY		Aggregate Base Course (Class 6)	304-06007	rvo
Bid Item Desc		\$	2	2,000.00).1 AC	0	Seeding (native)	212-00006	
Bid Item Desc		\$		50.00	20 LF	11	Reset Fence and Gate	210-01000	
Mobilization Mobi		\$	1	1,000.00	2 EA		Reset Mailbox Structure	210-00010	
Bid Item Desc	Driveway culve			50.00			Unclassified Excavation	203-00000	
Bid Item Desc				15.00			Removal of Asphalt	202-00220	
Bid Item Desc				75.00	2 LF		Removal of Pipe	202-00035	
Bid Item Desc	_	\$ 53,250.00	53,250.00	\$ 50,000.00 \$	1 LS			100-00000	
Bid Item Desc		١,				,	Bid Alternative #1 Site 1 Total		
Bid Hem Desc	Bid alt #1 for p	\$		150.00	80 SY	_		412-00600	
Bid Item Desc							#1	Bid Alternative #1	
Mobilization	_	5					Site 1 Tota		
Bild Item Desc		\$ 40,000.00						Contingency	
Mobilization								Sub-Total	
Mobilization	10% of sub-tota				1 F/A		F/A Erosion Control	700-70380	
Mobilization	10% of sub-tota				1 F/A		F/A Drainage Improvement	700-70530	
Mobilization Lis Listend Cost				1 F/A		F/A Landcape Removal and Restoration	700-70310		
Mobilization Lis Succession Lis Linkt Cost Li	10% of construc				1 LS		Traffic Control	630-00016	
Mobilization		1	15,975.00	15,000.00	1 LS		As-Built Surveying	625-99999	
Mobilization		\$		100.00			Curb and Gutter Type 2 (Special)	609-21900	s
Mobilization		\$		50.00			Curb and Gutter Type 2 (Section I-B)	609-21010	ite
Mobilization Class Class	Sidewalk repla	\$		180.00	20 SY		Concrete Sidewalk (Special)	608-00005	1 - 1
Mobilization Capta Capta		\$	31	30,000.00	1 EA		Inlet Special (Type R 25 Foot)	604-19000	Han
Mobilization Care			راو	8,500.00	1 EA		48" Flared End Section (RCP)	603-05048	pto
Mobilization Mobi	T) Sillill alpac		1	1.000.00	20 Cr 19 LF	11 1	48-inch Reinforced Concrete Pipe (CIP)	603-01485	on/E
Mobilization Mobi		\$		300.00	3 CY	4	Riprap (24 Inch)	506-00224	rics
Mobilization Care		\$ 10		150.00	65 SY		Concrete Pavement (6 Inch)	412-00600	on
Mobilization Mobi		\$		50.00	20 SY	13	Hot Mix Asphalt (Grading SX) (75) (PG 58-28)	403-34722	
Mobilization Mobi			74.55	70.00			Aggregate Base Course (Class 6)	304-06007	
Mobilization Mobi			2,	2,000.00	1 EA		Remove Tree (tubeling)	214-00201	
Mobilization City Unit Cost Unit Cost Inflation Extend Cost Notes	•			2,000.00).1 AC	0	Seeding (native)	212-00006	
Mobilization Care	Fence adjacent			40.00		11	Reset Fence	210-01000	
Mobilization Curb and Gutter Curb and Gutt		\$ 1		50.00	30 CY		Unclassified Excavation	203-00000	
Bid Item Desc Qty Unit Unit Cost Inflation Extend Cost Notes Mobilization 1 LS \$ 100,000.00 \$ 106,500.00 \$ 106,500.00 Includes mobil Removal of Sidewalk 40 SY \$ 35.00 \$ 37.28 \$ 1,491.00 Removal of sud Removal of Curb and Gutter 65 LF \$ 20.00 \$ 21.30 \$ 1,384.50 Removal of curb and sud Removal of Concrete Pavement 25 SY \$ 50.00 \$ 3.25 \$ 1,331.25 Removal of concrete Pavement		\$		15.00	40 SY		Removal of Asphalt	202-00220	
Bid Item Desc Qty Unit Onit Unit Cost Inflation Extend Cost Notes Mobilization 1 US \$ 100,000.00 \$ 106,500.00 \$ 106,500.00 \$ 106,500.00 Inflation \$ 1,000.00	Removal of cor	\$ 1		50.00	25 SY		Removal of Concrete Pavement	202-00210	
Mobilization August Mobilization Mobilizati	Removal of cur	\$ 1,384.50		20.00			Removal of Curb and Gutter	202-00203	
Bid Item Desc Qty Unit Unit Cost Inflation) Extend Cost		\$ 1,491.00	37.28	\$ 35.00 \$,	Removal of Sidewalk	202-00200	
. Bid Item Desc Qty Unit Unit Cost inflation) Extend Cost		\$ 106,500.00	106,500.00	\$ 100,000.00 \$	1 LS		Mobilization	100-00000	
Unit Quantity + 6.5% (for	Notes	Extend Cost	inflation)		Unit	Qty	Bid Item Desc	Bid Item No.	
			Unit Quantity + 6.5% (for						


 * all unit quantity costs are from 2024 CDOT Cost Data Book and were increased by 6.5% for inflation, if otherwise it is noted in assumption


APPENDIX E – DRAINAGE MAPS

